Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 5 papers out of 5 papers

Geochemical-Compositional-Functional Changes in Arctic Soil Microbiomes Post Land Submergence Revealed by Metagenomics.

  • Nengfei Wang‎ et al.
  • Microbes and environments‎
  • 2019‎

Lakes of meltwater in the Artic have become one of the transforming landscape changes under global warming. We herein compared microbial communities between sediments and bank soils at an arctic lake post land submergence using geochemistry, 16S rRNA amplicons, and metagenomes. The results obtained showed that each sample had approximately 2,609 OTUs on average and shared 1,716 OTUs based on the 16S rRNA gene V3-V4 region. Dominant phyla in sediments and soils included Proteobacteria, Acidobacteria, Actinobacteria, Gemmatimonadetes, and Nitrospirae; sediments contained a unique phylum, Euryarchaeota, with the phylum Thaumarchaeota being primarily present in bank soils. Among the top 35 genera across all sites, 17 were more abundant in sediments, while the remaining 18 were more abundant in bank soils; seven out of the top ten genera across all sites were only from sediments. A redundancy analysis separated sediment samples from soil samples based on the components of nitrite and ammonium. Metagenome results supported the role of nitrite because most of the genes for denitrification and methane metabolic genes were more abundant in sediments than in soils, while the abundance of phosphorus-utilizing genes was similar and, thus, was not a significant explanatory factor. We identified several modules from the global networks of OTUs that were closely related to some geochemical factors, such as pH and nitrite. Collectively, the present results showing consistent changes in geochemistry, microbiome compositions, and functional genes suggest an ecological mechanism across molecular and community levels that structures microbiomes post land submergence.


The Effect of Nitrogen Content on Archaeal Diversity in an Arctic Lake Region.

  • Jinjiang Lv‎ et al.
  • Microorganisms‎
  • 2019‎

The function of Arctic soil ecosystems is crucially important for the global climate, and nitrogen (N) is the major limiting nutrient in these environments. This study assessed the effects of changes in nitrogen content on archaeal community diversity and composition in the Arctic lake area (London Island, Svalbard). A total of 16S rRNA genes were sequenced to investigate archaeal community composition. First, the soil samples and sediment samples were significantly different for the geochemical properties and archaeal community composition. Thaumarchaeota was an abundant phylum in the nine soil samples. Moreover, Euryarchaeota, Woesearchaeota, and Bathyarchaeota were significantly abundant phyla in the three sediment samples. Second, it was found that the surface runoff caused by the thawing of frozen soil and snow changed the geochemical properties of soils. Then, changes in geochemical properties affected the archaeal community composition in the soils. Moreover, a distance-based redundancy analysis revealed that NH4+-N (p < 0.05) and water content were the most significant factors that correlated with the archaeal community composition. Our study suggests that nitrogen content plays an important role in soil archaeal communities. Moreover, archaea play an important role in the carbon and nitrogen cycle in the Arctic lake area.


Direct and Indirect Effects of Penguin Feces on Microbiomes in Antarctic Ornithogenic Soils.

  • Yudong Guo‎ et al.
  • Frontiers in microbiology‎
  • 2018‎

Expansion of penguin activity in maritime Antarctica, under ice thaw, increases the chances of penguin feces affecting soil microbiomes. The detail of such effects begins to be revealed. By comparing soil geochemistry and microbiome composition inside (one site) and outside (three sites) of the rookery, we found significant effects of penguin feces on both. First, penguin feces change soil geochemistry, causing increased moisture content (MC) of ornithogenic soils and nutrients C, N, P, and Si in the rookery compared to non-rookery sites, but not pH. Second, penguin feces directly affect microbiome composition in the rookery, not those outside. Specifically, we found 4,364 operational taxonomical units (OTUs) in 404 genera in six main phyla: Proteobacteria, Actinobacteria, Gemmatimonadetes, Acidobacteria, Chloroflexi, and Bacteroidetes. Although the diversity is similar among the four sites, the composition is different. For example, penguin rookery has a lower abundance of Acidobacteria, Chloroflexi, and Nitrospirae but a higher abundance of Bacteroidetes, Firmicutes, and Thermomicrobia. Strikingly, the family Clostridiaceae of Firmicutes of penguin-feces origin is most abundant in the rookery than non-rookery sites with two most abundant genera, Tissierella and Proteiniclasticum. Redundancy analysis showed all measured geochemical factors are significant in structuring microbiomes, with MC showing the highest correlation. We further extracted 21 subnetworks of microbes which contain 4,318 of the 4,364 OTUs using network analysis and are closely correlated with all geochemical factors except pH. Our finding f penguin feces, directly and indirectly, affects soil microbiome suggests an important role of penguins in soil geochemistry and microbiome structure of maritime Antarctica.


Yi qi qing re gao attenuates podocyte injury and inhibits vascular endothelial growth factor overexpression in puromycin aminonucleoside rat model.

  • Yongli Zhan‎ et al.
  • Evidence-based complementary and alternative medicine : eCAM‎
  • 2014‎

Proteinuria is the hallmark of chronic kidney disease. Podocyte damage underlies the formation of proteinuria, and vascular endothelial growth factor (VEGF) functions as an autocrine/paracrine regulator. Yi Qi Qing Re Gao (YQQRG) has been used to treat proteinuria for more than two decades. The objective of this study was to investigate the protective effect and possible mechanisms of YQQRG on puromycin aminonucleoside (PAN) rat model. Eighty male Sprague-Dawley rats were randomized into sham group, PAN group, PAN + YQQRG group, and PAN + fosinopril group. Treatments were started 7 days before induction of nephrosis (a single intravenous injection of 40 mg/kg PAN) until day 15. 24 h urinary samples were collected on days 5, 9, and 14. The animals were sacrificed on days 3, 10, and 15, respectively. Blood samples and renal tissues were obtained for detection of biochemical and molecular biological parameters. YQQRG significantly reduced proteinuria, elevated serum albumin, and alleviated renal pathological lesions. YQQRG inhibited VEGF-A, nephrin, podocin, and CD2AP mRNA expression and elevated nephrin, podocin, and CD2AP protein levels starting on day 3. In conclusion, YQQRG attenuates podocyte injury in the rat PAN model through downregulation of VEGF-A and restoration of nephrin, podocin, and CD2AP protein expression.


The effects of ACEI/ARB, aldosterone receptor antagonists and statins on preventing recurrence of atrial fibrillation: A protocol for systematic review and network meta-analysis.

  • Qiulei Jia‎ et al.
  • Medicine‎
  • 2021‎

Atrial fibrillation (AF) is one of the most common arrhythmias, and is high relative to cardiovascular morbidity and mortality. AF-related complications and treatment costs bring about huge health burden, therefore the prevention recurrence of AF is imperative. "Upstream therapy" refers to the use of non-antiarrhythmic drugs (non-AADs) that modify the atrial substrate or target-specific mechanisms of AF to prevent the occurrence or recurrence of the arrhythmia. RAAS Blockers, aldosterone receptor antagonists and statins have an effect on preventing recurrence of atrial fibrillation. This protocol is designed for systematic review and network meta-analysis, which will assess comparative effects and safety of various non-antiarrhythmic drugs in preventing recurrence of atrial fibrillation.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: