Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 15 papers out of 15 papers

Setosphlides A-D, New Isocoumarin Derivatives from the Entomogenous Fungus Setosphaeria rostrate LGWB-10.

  • Wenbin Gao‎ et al.
  • Natural products and bioprospecting‎
  • 2021‎

Investigation of the entomogenous fungus Setosphaeria rostrate LGWB-10 from Harmonia axyridis led to the isolation of four new isocoumarin derivatives, setosphlides A-D (1-4), and four known analogues (5-8). Their planar structures and the relative configurations were elucidated by comprehensive spectroscopic methods. The absolute configurations of isocoumarin nucleus for 1-4 were elucidated by their ECD spectra. The C-10 relative configurations for the pair of C-10 epimers (1 and 2) were established by comparing the magnitude of the computed 13C NMR chemical shifts (Δδcalcd.) with the experimental 13C NMR values (Δδexp.) for the epimers. All of the isolated compounds (1-8) were evaluated for their cytotoxicities against four human tumor cell lines MCF-7, MGC-803, HeLa, and Huh-7.


Promoting therapeutic angiogenesis of focal cerebral ischemia using thrombospondin-4 (TSP4) gene-modified bone marrow stromal cells (BMSCs) in a rat model.

  • Qian Zhang‎ et al.
  • Journal of translational medicine‎
  • 2019‎

A stroke caused by angiostenosis always has a poor prognosis. Bone marrow stromal cells (BMSC) are widely applied in vascular regeneration. Recently, thrombospondin-4 (TSP4) was reported to promote the regeneration of blood vessels and enhance the function of endothelial cells in angiogenesis. In this work, we observed the therapeutic effect of TSP4-overexpressing BMSCs on angiogenesis post-stroke.


Acetyl-CoA production by specific metabolites promotes cardiac repair after myocardial infarction via histone acetylation.

  • Ienglam Lei‎ et al.
  • eLife‎
  • 2021‎

Myocardial infarction (MI) is accompanied by severe energy deprivation and extensive epigenetic changes. However, how energy metabolism and chromatin modifications are interlinked during MI and heart repair has been poorly explored. Here, we examined the effect of different carbon sources that are involved in the major metabolic pathways of acetyl-CoA synthesis on myocardial infarction and found that elevation of acetyl-CoA by sodium octanoate (8C) significantly improved heart function in ischemia reperfusion (I/R) rats. Mechanistically, 8C reduced I/R injury by promoting histone acetylation which in turn activated the expression of antioxidant genes and inhibited cardiomyocyte (CM) apoptosis. Furthermore, we elucidated that 8C-promoted histone acetylation and heart repair were carried out by metabolic enzyme medium-chain acyl-CoA dehydrogenase (MCAD) and histone acetyltransferase Kat2a, suggesting that 8C dramatically improves cardiac function mainly through metabolic acetyl-CoA-mediated histone acetylation. Therefore, our study uncovers an interlinked metabolic/epigenetic network comprising 8C, acetyl-CoA, MCAD, and Kat2a to combat heart injury.


Effect of autologous NK cell immunotherapy on advanced lung adenocarcinoma with EGFR mutations.

  • Guodai Hong‎ et al.
  • Precision clinical medicine‎
  • 2019‎

This study investigated the efficiency of natural killer (NK) cell immunotherapy on non-small cell lung cancer with and without EGFR mutations in order to evaluate the response rate (RR) and progression-free survival (PFS). Among the 48 patients recruited, 24 were clinically confirmed to be EGFR mutation positive. The study group was treated with autologous NK cell immunotherapy. Comparisons of the lymphocyte number, serum tumour-related biomarkers, circulating tumour cells (CTC), Karnofsky Performance Status (KPS) and survival curves were carried out before and after NK cell immunotherapy. The safety and short-term effects were evaluated, followed by median PFS and RR assessments. The serum CEA and CA125 values were found lower in the NK cell therapy group than that of the non-NK treatment group (p < 0.05). The χ2 test showed a 75% RR of the study group A, significantly higher than that of the control group B (16.7%; p < 0.01). The RR of groups C (58.3%) and D (41.7%) were not statistically significant. The p values of the 4 groups were 0.012, 0.012, 0.166 and 1 from group A to group D, respectively. The median PFS was 9 months in EGFR mutation positive group undergoing NK cell infusion interference. By evaluating the changes in immune function, tumour biomarkers, CTC, KPS and PFS, we demonstrated that NK cell therapy had better clinical therapeutic effects on EGFR mutation-positive lung adenocarcinoma.


Genome mosaic structure of two novel HIV-1 recombinant forms (CRF01_AE/B) in men who have sex with men in Hebei, China.

  • Xinli Lu‎ et al.
  • AIDS research and therapy‎
  • 2023‎

Homosexual contact is the main route of human immunodeficiency virus type one (HIV-1) transmission in Cangzhou Prefecture, Hebei, China. Moreover, the number of circulating recombinant forms (CRFs) and unique recombinant forms (URFs) in this key population is ever increasing.


Cornel Iridoid Glycoside Inhibits Tau Hyperphosphorylation via Regulating Cross-Talk Between GSK-3β and PP2A Signaling.

  • Cuicui Yang‎ et al.
  • Frontiers in pharmacology‎
  • 2018‎

Neurofibrillary pathology contributes to neuronal dysfunction and correlates with the clinical progression of Alzheimer's disease (AD). Tau phosphorylation is mainly regulated by a balance of glycogen synthase kinase-3β (GSK-3β) and protein phosphatase 2A (PP2A) activities. Cornel iridoid glycoside (CIG) is a main component extracted from Cornus officinalis. The purpose of this study was to investigate the effects of CIG on GSK-3β and PP2A, thus to explore the mechanisms of CIG to inhibit tau hyperphosphorylation. The rat model of tau hyperphosphorylation was established by intraventricular injection of wortmannin and GF-109203X (GFX) to activate GSK-3β. The results showed that intragastrical administration of CIG inhibited tau hyperphosphorylation in the brain of rats induced by wortmannin/GFX. The results in vivo and in vitro exhibited that CIG inhibited tau hyperphosphorylation and GSK-3β over-activation. In the mechanism of action, CIG's attenuating GSK-3β activity was found to be dependent on PI3K/AKT signaling pathway. PP2A catalytic C subunit (PP2Ac) siRNA abrogated the effect of CIG on PI3K/AKT/GSK-3β. Additionally and crucially, we also found that CIG inhibited the demethylation of PP2Ac at Leu309 in vivo and in vitro. It enhanced PP2A activity, decreased tau hyperphosphorylation, and protected cell morphology in okadaic acid (OA)-induced cell model in vitro. PP2Ac siRNA abated the inhibitory effect of CIG on tau hyperphosphorylation. Moreover, CIG inhibited protein phosphatase methylesterase-1 (PME-1) and demethylation of PP2Ac, enhanced PP2A activity, and decreased tau hyperphosphorylation in PME-1-transfectd cells. Taken together, CIG inhibited GSK-3β activity via promoting P13K/AKT and PP2A signaling pathways. In addition, CIG also elevated PP2A activity via inhibiting PME-1-induced PP2Ac demethylation to inhibit GSK-3β activity, thus regulated the cross-talk between GSK-3β and PP2A signaling and consequently inhibited tau hyperphosphorylation. These results suggest that CIG may be a promising agent for AD therapy.


Structure Revision and Protein Tyrosine Phosphatase Inhibitory Activity of Drazepinone.

  • Fei Cao‎ et al.
  • Marine drugs‎
  • 2021‎

From the marine-derived fungus Penicillium sumatrense (Trichocomaceae), a pair of enantiomers [(+)-1 and (-)-1] were isolated with identical 1D NMR data to drazepinone, which was originally reported to have a trisubstituted naphthofuroazepinone skeleton. In this study, we confirmed the structures of the two enantiomers as drazepinone and revised their structures by detailed analysis of extensive 2D NMR data and a comparison of the calculated 13C chemical shifts, ECD, VCD, and ORD spectra with those of the experiment ones. (+)-1 and (-)-1 were evaluated for their PTP inhibitory activity in vitro. (-)-1 showed selective PTP inhibitory activity against PTP1B and TCPTP with IC50 values of 1.56 and 12.5 μg/mL, respectively.


Iturin A Extracted From Bacillus subtilis WL-2 Affects Phytophthora infestans via Cell Structure Disruption, Oxidative Stress, and Energy Supply Dysfunction.

  • Youyou Wang‎ et al.
  • Frontiers in microbiology‎
  • 2020‎

Potato late blight, caused by Phytophthora infestans (Mont.) de Bary, represents a great food security threat worldwide and is difficult to control. Recently, Bacillus spp. have been considered biocontrol agents to control many plant diseases. Here, Bacillus subtilis WL-2 was selected as a potent strain against P. infestans mycelium growth, and its functional metabolite was identified as Iturin A via electrospray ionization mass spectrometry (ESI-MS). Analyses using scanning electron microscopy (SEM) and transmission electron microscopy (TEM) revealed that Iturin A caused cell membrane disruption and an irregular internal cell structure. In addition, Iturin A triggered oxidative stress reactions similarly to reactive oxygen species (ROS) in P. infestans cells and caused mitochondrial damage, including mitochondrial membrane potential (MMP), mitochondrial respiratory chain complex activity (MRCCA), and ATP production decline. These results highlight that the cell structure disruption, oxidative stress, and energy supply dysfunction induced by Iturin A play an important role in inhibiting P. infestans. Additionally, B. subtilis WL-2 and Iturin A have great potential for inhibiting P. infestans mycelium growth and controlling potato late blight in the future.


Bacillus megaterium WL-3 Lipopeptides Collaborate Against Phytophthora infestans to Control Potato Late Blight and Promote Potato Plant Growth.

  • Youyou Wang‎ et al.
  • Frontiers in microbiology‎
  • 2020‎

Oomycete Phytophthora infestans [(Mont.) de Bary] is the cause of potato late blight, a plant disease which poses a serious threat to our global food security and is responsible for huge economic losses worldwide. Lipopeptides produced by Bacillus species are known to be potent antibacterial compounds against many plant pathogens. In this study, we show that Bacillus megaterium WL-3 has an antagonistic effect against potato late blight. Electrospray ionization mass spectrometry (ESI-MS) revealed that lipopeptides derived from the WL-3 strain contained three subfamilies, surfactin (C13 - C15), Iturin A (C14 - C16), and Fengycin A (C15 - C19). The Iturin A and Fengycin A lipopeptide families were each confirmed to have anti-oomycete effects against P. infestans mycelium growth as well as obvious controlling effects against potato late blight in greenhouse experiments and field assays. Furthermore, Iturin A and Fengycin A were able to promote plant photosynthetic efficiency, plant growth, and potato yield. Most importantly, the combination of Iturin A and Fengycin A (I + F) was superior to individual lipopeptides in controlling potato late blight and in the promotion of plant growth. The results of this study indicate that B. megaterium WL-3 and its lipopeptides are potential candidates for the control of late blight and the promotion of potato plant growth.


Progression-Free Survival of a Patient with Advanced Hepatocellular Carcinoma Treated with Adoptive Cell Therapy Using Natural Killer Cells: A Case Report.

  • Guodai Hong‎ et al.
  • OncoTargets and therapy‎
  • 2022‎

Adoptive cell therapy (ACT) is a promising treatment that is considered safe and efficient. Natural killer (NK) cells play an important role in the innate immune system and destroy target cells such as tumor cells without prior sensitization. Here, we report a 59-year-old man with advanced diffuse hepatocellular carcinoma (HCC) who underwent 17 courses of NK cell treatment from March 2017 to July 2018. Although he presented with progressive disease, his hydrothorax and ascites decreased, and his state of mind, appetite and quality of life were markedly improved after treatment versus at admission. To date, his survival time is >48 months. Here, we provide evidence that NK cell adoptive therapy has no adverse effects, enhances immune function, and improves the quality of life of patients with HCC.


A prognostic nomogram for predicting overall survival in colorectal mucinous adenocarcinoma patients based on the SEER database.

  • Qian Wu‎ et al.
  • Biomolecules & biomedicine‎
  • 2023‎

A nomogram was constructed to predict the survival of patients with colorectal mucinous adenocarcinoma based on data extracted from the Surveillance, Epidemiology and End Result (SEER) database. Data collected between 2010 and 2018 were obtained from the SEER database. The log-rank test and multivariate Cox regression were performed to identify the independent prognostic factors for overall survival, which were further used to construct a nomogram model to predict 1-, 3-, and 5-year overall survival. In total, 10846 patients diagnosed with colorectal mucinous adenocarcinoma were enrolled in the study. The following 11 variables were associated with survival and were further incorporated into the nomogram: age at diagnosis, primary site, grade, tumour size, lymph node dissection, T stage, N stage, M stage, surgery for primary site, chemotherapy, and household income. The concordance index (C-index) value was 0.725 (95% confidence interval 0.716-0.734), and the receiver operating characteristic curves and calibration curves showed satisfactory predictive accuracy. Both the C-index and time-independent area under the curve values were greater than those of the American Joint Committee on Cancer 7th TNM classification system (both P < 0.001). In the validation group, the results were consistent with those of the training group, with a C-index value of 0.726 (95% confidence interval 0.713-0.739). This study constructed a practical nomogram to predict 1-, 3-, and 5-year OS for patients with colorectal colorectal mucinous adenocarcinoma based on SEER data.


Tumor-derived exosomal miRNA-141 promote angiogenesis and malignant progression of lung cancer by targeting growth arrest-specific homeobox gene (GAX).

  • Wulong Wang‎ et al.
  • Bioengineered‎
  • 2021‎

Previous researches have suggested that exosomal miRNA-141 has association with metastatic lung cancer, however, its role and regulatory mechanism require further study. In this study, exosomes were isolated from lung cancer patients and normal human serum and identified. We found that the expression of miRNA-141 was up-regulated in the lung cancer serum exosomes compared with the normal serum exosomes. When the exosomes were extracted for co-culture with HUVECs, they were absorbed and distributed around the nucleus by confocal microscopy. Moreover, exosomal miRNA-141 from A549 significantly not only promoted the migration and invasion of A549 but also increased the cell proliferation, tube formation of HUVECs. In order to reveal the mechanism of exosomal miRNA-141, bioinformatics analysis revealed that miRNA-141 targeted the binding of Growth arrest-specific homeobox gene (GAX) in the 3'UTR region, and confirmed by MS2-RIP assay and dual-luciferase assay. Exosome miRNA-141 could down-regulate the expression of GAX. Taken together, our results demonstrate that tumor-derived exosomal miRNA-141 promote angiogenesis and malignant progression of lung cancer by targeting GAX. It provides a new possibility for the treatment of lung cancer.


Inhibiting Receptor of Advanced Glycation End Products Attenuates Pressure Overload-Induced Cardiac Dysfunction by Preventing Excessive Autophagy.

  • Wenbin Gao‎ et al.
  • Frontiers in physiology‎
  • 2018‎

The receptor for advanced glycation end products (RAGE) is involved in heart failure (HF) by mediating diverse pathologic processes, including the promotion of inflammation and autophagy. However, the role of RAGE in pressure overload-induced HF is not well understood. We found that stimulation of RAGE triggered the death of neonatal rat ventricular myocytes (NRVMs), while cell death was alleviated by ATG5 knockdown. Using transverse aortic constriction (TAC) in mice as a model of pressure overload-induced HF, we demonstrated that RAGE knockout or RAGE blockade attenuated cardiac hypertrophy and fibrosis as well as cardiac dysfunction at 8 weeks after TAC. Importantly, RAGE knockout reversed upregulation of autophagy related proteins (LC3BII/I and Beclin 1) and reduced cardiomyocyte death, indicating that excessive autophagy after TAC was inhibited. Moreover, RAGE knockout or blockade reduced the upregulation of pp65-NFκB and BNIP3, which mediate autophagy. Taken together, these results suggest that RAGE plays an important role in the progression of HF by regulating autophagy. Therefore, inhibition of the RAGE-autophagy axis could be a promising new strategy for treatment of heart failure.


HDAC inhibitor valproic acid protects heart function through Foxm1 pathway after acute myocardial infarction.

  • Shuo Tian‎ et al.
  • EBioMedicine‎
  • 2019‎

Epigenetic histone acetylation is a major event controlling cell functions, such as metabolism, differentiation and repair. Here, we aim to determine whether Valproic acid (VPA), a FDA approved inhibitor of histone deacetylation for bipolar disease, could protect heart against myocardial infarction (MI) injury and elucidate key molecular pathways.


Coupled CRC 2D and ALI 3D Cultures Express Receptors of Emerging Viruses and Are More Suitable for the Study of Viral Infections Compared to Conventional Cell Lines.

  • Siyu Xia‎ et al.
  • Stem cells international‎
  • 2020‎

Infections of emerging and reemerging viruses (SARS-CoVs, influenza H1N1, etc.) largely and globally affect human health. Animal models often fail to reflect a physiological status because of species tropism of virus infection. Conventional cell lines are usually genetically and phenotypically different from primary cells. Developing an in vitro physiological model to study the infection of emerging viruses will facilitate our understanding of virus-host cell interactions, thereby benefiting antiviral drug discovery. In the current work, we first established normal airway epithelial cells (upper and lower airway track) in 2D and 3D culture systems using conditional reprogramming (CR) and air-liquid interface (ALI) techniques. These long-term cultures maintained differentiation potential. More importantly, these cells express two types of influenza virus receptors, α2-6-Gal- and α2-3-Gal-linked sialic acids, and angiotensin-converting enzyme 2 (ACE2), a receptor for SARS-CoVs as well. These cells were permissive to the infection of pandemic influenza H1N1 (H1N1pdm). In contrast, the lung cancer cell line A549 and immortalized airway epithelial cells (16HBE) were not susceptible to H1N1 infection. A virus-induced cytopathic effect (CPE) on 2D CRC cultures developed in a time-dependent manner. The pathological effects were also readily observed spreading from the apical layer to the basal layer of the 3D ALI culture. This integrated 2D CRC and 3D ALI cultures provide a physiological and personalized in vitro model to study the infection of emerging viruses. This novel model can be used for studying virus biology and host response to viral infection and for antiviral drug discovery.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: