Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 48 papers

Identification of susceptibility pathways for the role of chromosome 15q25.1 in modifying lung cancer risk.

  • Xuemei Ji‎ et al.
  • Nature communications‎
  • 2018‎

Genome-wide association studies (GWAS) identified the chromosome 15q25.1 locus as a leading susceptibility region for lung cancer. However, the pathogenic pathways, through which susceptibility SNPs within chromosome 15q25.1 affects lung cancer risk, have not been explored. We analyzed three cohorts with GWAS data consisting 42,901 individuals and lung expression quantitative trait loci (eQTL) data on 409 individuals to identify and validate the underlying pathways and to investigate the combined effect of genes from the identified susceptibility pathways. The KEGG neuroactive ligand receptor interaction pathway, two Reactome pathways, and 22 Gene Ontology terms were identified and replicated to be significantly associated with lung cancer risk, with P values less than 0.05 and FDR less than 0.1. Functional annotation of eQTL analysis results showed that the neuroactive ligand receptor interaction pathway and gated channel activity were involved in lung cancer risk. These pathways provide important insights for the etiology of lung cancer.


Genome-wide Modeling of Polygenic Risk Score in Colorectal Cancer Risk.

  • Minta Thomas‎ et al.
  • American journal of human genetics‎
  • 2020‎

Accurate colorectal cancer (CRC) risk prediction models are critical for identifying individuals at low and high risk of developing CRC, as they can then be offered targeted screening and interventions to address their risks of developing disease (if they are in a high-risk group) and avoid unnecessary screening and interventions (if they are in a low-risk group). As it is likely that thousands of genetic variants contribute to CRC risk, it is clinically important to investigate whether these genetic variants can be used jointly for CRC risk prediction. In this paper, we derived and compared different approaches to generating predictive polygenic risk scores (PRS) from genome-wide association studies (GWASs) including 55,105 CRC-affected case subjects and 65,079 control subjects of European ancestry. We built the PRS in three ways, using (1) 140 previously identified and validated CRC loci; (2) SNP selection based on linkage disequilibrium (LD) clumping followed by machine-learning approaches; and (3) LDpred, a Bayesian approach for genome-wide risk prediction. We tested the PRS in an independent cohort of 101,987 individuals with 1,699 CRC-affected case subjects. The discriminatory accuracy, calculated by the age- and sex-adjusted area under the receiver operating characteristics curve (AUC), was highest for the LDpred-derived PRS (AUC = 0.654) including nearly 1.2 M genetic variants (the proportion of causal genetic variants for CRC assumed to be 0.003), whereas the PRS of the 140 known variants identified from GWASs had the lowest AUC (AUC = 0.629). Based on the LDpred-derived PRS, we are able to identify 30% of individuals without a family history as having risk for CRC similar to those with a family history of CRC, whereas the PRS based on known GWAS variants identified only top 10% as having a similar relative risk. About 90% of these individuals have no family history and would have been considered average risk under current screening guidelines, but might benefit from earlier screening. The developed PRS offers a way for risk-stratified CRC screening and other targeted interventions.


Lossless integration of multiple electronic health records for identifying pleiotropy using summary statistics.

  • Ruowang Li‎ et al.
  • Nature communications‎
  • 2021‎

Increasingly, clinical phenotypes with matched genetic data from bio-bank linked electronic health records (EHRs) have been used for pleiotropy analyses. Thus far, pleiotropy analysis using individual-level EHR data has been limited to data from one site. However, it is desirable to integrate EHR data from multiple sites to improve the detection power and generalizability of the results. Due to privacy concerns, individual-level patients' data are not easily shared across institutions. As a result, we introduce Sum-Share, a method designed to efficiently integrate EHR and genetic data from multiple sites to perform pleiotropy analysis. Sum-Share requires only summary-level data and one round of communication from each site, yet it produces identical test statistics compared with that of pooled individual-level data. Consequently, Sum-Share can achieve lossless integration of multiple datasets. Using real EHR data from eMERGE, Sum-Share is able to identify 1734 potential pleiotropic SNPs for five cardiovascular diseases.


Detecting potential pleiotropy across cardiovascular and neurological diseases using univariate, bivariate, and multivariate methods on 43,870 individuals from the eMERGE network.

  • Xinyuan Zhang‎ et al.
  • Pacific Symposium on Biocomputing. Pacific Symposium on Biocomputing‎
  • 2019‎

The link between cardiovascular diseases and neurological disorders has been widely observed in the aging population. Disease prevention and treatment rely on understanding the potential genetic nexus of multiple diseases in these categories. In this study, we were interested in detecting pleiotropy, or the phenomenon in which a genetic variant influences more than one phenotype. Marker-phenotype association approaches can be grouped into univariate, bivariate, and multivariate categories based on the number of phenotypes considered at one time. Here we applied one statistical method per category followed by an eQTL colocalization analysis to identify potential pleiotropic variants that contribute to the link between cardiovascular and neurological diseases. We performed our analyses on ~530,000 common SNPs coupled with 65 electronic health record (EHR)-based phenotypes in 43,870 unrelated European adults from the Electronic Medical Records and Genomics (eMERGE) network. There were 31 variants identified by all three methods that showed significant associations across late onset cardiac- and neurologic- diseases. We further investigated functional implications of gene expression on the detected "lead SNPs" via colocalization analysis, providing a deeper understanding of the discovered associations. In summary, we present the framework and landscape for detecting potential pleiotropy using univariate, bivariate, multivariate, and colocalization methods. Further exploration of these potentially pleiotropic genetic variants will work toward understanding disease causing mechanisms across cardiovascular and neurological diseases and may assist in considering disease prevention as well as drug repositioning in future research.


Pharmacogenetics of hypoglycemia associated with sulfonylurea therapy in usual clinical care.

  • Sabrina L Mitchell‎ et al.
  • The pharmacogenomics journal‎
  • 2020‎

Hypoglycemia is a common complication among type 2 diabetes mellitus (T2DM) patients receiving sulfonylurea therapy. The aim of this study was to determine if genetic contributions to sulfonylurea pharmacokinetics or pharmacodynamics substantially affect the risk of hypoglycemia in these patients. In a retrospective case-control study in European American patients with T2DM, we examined the potential association between CYP2C9 reduced-function variants and sulfonylurea-related hypoglycemia. We also explored the relationship between sulfonylurea-related hypoglycemia and several candidate genetic variants previously reported to alter the response to sulfonylureas. We detected no evidence of association between CYP2C9 reduced-function alleles or any of the candidate genetic variants and sulfonylurea-related hypoglycemia. In conclusion, we identified no clinically significant predictors of hypoglycemia among genes associated with sulfonylurea pharmacokinetics or pharmacodynamics.


High-throughput framework for genetic analyses of adverse drug reactions using electronic health records.

  • Neil S Zheng‎ et al.
  • PLoS genetics‎
  • 2021‎

Understanding the contribution of genetic variation to drug response can improve the delivery of precision medicine. However, genome-wide association studies (GWAS) for drug response are uncommon and are often hindered by small sample sizes. We present a high-throughput framework to efficiently identify eligible patients for genetic studies of adverse drug reactions (ADRs) using "drug allergy" labels from electronic health records (EHRs). As a proof-of-concept, we conducted GWAS for ADRs to 14 common drug/drug groups with 81,739 individuals from Vanderbilt University Medical Center's BioVU DNA Biobank. We identified 7 genetic loci associated with ADRs at P < 5 × 10-8, including known genetic associations such as CYP2D6 and OPRM1 for CYP2D6-metabolized opioid ADR. Additional expression quantitative trait loci and phenome-wide association analyses added evidence to the observed associations. Our high-throughput framework is both scalable and portable, enabling impactful pharmacogenomic research to improve precision medicine.


A unified framework identifies new links between plasma lipids and diseases from electronic medical records across large-scale cohorts.

  • Yogasudha Veturi‎ et al.
  • Nature genetics‎
  • 2021‎

Plasma lipids are known heritable risk factors for cardiovascular disease, but increasing evidence also supports shared genetics with diseases of other organ systems. We devised a comprehensive three-phase framework to identify new lipid-associated genes and study the relationships among lipids, genotypes, gene expression and hundreds of complex human diseases from the Electronic Medical Records and Genomics (347 traits) and the UK Biobank (549 traits). Aside from 67 new lipid-associated genes with strong replication, we found evidence for pleiotropic SNPs/genes between lipids and diseases across the phenome. These include discordant pleiotropy in the HLA region between lipids and multiple sclerosis and putative causal paths between triglycerides and gout, among several others. Our findings give insights into the genetic basis of the relationship between plasma lipids and diseases on a phenome-wide scale and can provide context for future prevention and treatment strategies.


An updated, computable MEDication-Indication resource for biomedical research.

  • Neil S Zheng‎ et al.
  • Scientific reports‎
  • 2021‎

The MEDication-Indication (MEDI) knowledgebase has been utilized in research with electronic health records (EHRs) since its publication in 2013. To account for new drugs and terminology updates, we rebuilt MEDI to overhaul the knowledgebase for modern EHRs. Indications for prescribable medications were extracted using natural language processing and ontology relationships from six publicly available resources: RxNorm, Side Effect Resource 4.1, Mayo Clinic, WebMD, MedlinePlus, and Wikipedia. We compared the estimated precision and recall between the previous MEDI (MEDI-1) and the updated version (MEDI-2) with manual review. MEDI-2 contains 3031 medications and 186,064 indications. The MEDI-2 high precision subset (HPS) includes indications found within RxNorm or at least three other resources. MEDI-2 and MEDI-2 HPS contain 13% more medications and over triple the indications compared to MEDI-1 and MEDI-1 HPS, respectively. Manual review showed MEDI-2 achieves the same precision (0.60) with better recall (0.89 vs. 0.79) compared to MEDI-1. Likewise, MEDI-2 HPS had the same precision (0.92) and improved recall (0.65 vs. 0.55) than MEDI-1 HPS. The combination of MEDI-1 and MEDI-2 achieved a recall of 0.95. In updating MEDI, we present a more comprehensive medication-indication knowledgebase that can continue to facilitate applications and research with EHRs.


Association between APOL1 risk variants and the occurrence of sepsis in Black patients hospitalized with infections: a retrospective cohort study.

  • Lan Jiang‎ et al.
  • eLife‎
  • 2023‎

Two risk variants in the apolipoprotein L1 gene (APOL1) have been associated with increased susceptibility to sepsis in Black patients. However, it remains unclear whether APOL1 high-risk genotypes are associated with occurrence of either sepsis or sepsis-related phenotypes in patients hospitalized with infections, independent of their association with pre-existing severe renal disease.


Trans-ethnic association study of blood pressure determinants in over 750,000 individuals.

  • Ayush Giri‎ et al.
  • Nature genetics‎
  • 2019‎

In this trans-ethnic multi-omic study, we reinterpret the genetic architecture of blood pressure to identify genes, tissues, phenomes and medication contexts of blood pressure homeostasis. We discovered 208 novel common blood pressure SNPs and 53 rare variants in genome-wide association studies of systolic, diastolic and pulse pressure in up to 776,078 participants from the Million Veteran Program (MVP) and collaborating studies, with analysis of the blood pressure clinical phenome in MVP. Our transcriptome-wide association study detected 4,043 blood pressure associations with genetically predicted gene expression of 840 genes in 45 tissues, and mouse renal single-cell RNA sequencing identified upregulated blood pressure genes in kidney tubule cells.


A phenome-wide association study to discover pleiotropic effects of PCSK9, APOB, and LDLR.

  • Maya S Safarova‎ et al.
  • NPJ genomic medicine‎
  • 2019‎

We conducted an electronic health record (EHR)-based phenome-wide association study (PheWAS) to discover pleiotropic effects of variants in three lipoprotein metabolism genes PCSK9, APOB, and LDLR. Using high-density genotype data, we tested the associations of variants in the three genes with 1232 EHR-derived binary phecodes in 51,700 European-ancestry (EA) individuals and 585 phecodes in 10,276 African-ancestry (AA) individuals; 457 PCSK9, 730 APOB, and 720 LDLR variants were filtered by imputation quality (r 2 > 0.4), minor allele frequency (>1%), linkage disequilibrium (r 2 < 0.3), and association with LDL-C levels, yielding a set of two PCSK9, three APOB, and five LDLR variants in EA but no variants in AA. Cases and controls were defined for each phecode using the PheWAS package in R. Logistic regression assuming an additive genetic model was used with adjustment for age, sex, and the first two principal components. Significant associations were tested in additional cohorts from Vanderbilt University (n = 29,713), the Marshfield Clinic Personalized Medicine Research Project (n = 9562), and UK Biobank (n = 408,455). We identified one PCSK9, two APOB, and two LDLR variants significantly associated with an examined phecode. Only one of the variants was associated with a non-lipid disease phecode, ("myopia") but this association was not significant in the replication cohorts. In this large-scale PheWAS we did not find LDL-C-related variants in PCSK9, APOB, and LDLR to be associated with non-lipid-related phenotypes including diabetes, neurocognitive disorders, or cataracts.


Scanning the medical phenome to identify new diagnoses after recovery from COVID-19 in a US cohort.

  • Vern Eric Kerchberger‎ et al.
  • Journal of the American Medical Informatics Association : JAMIA‎
  • 2023‎

COVID-19 survivors are at risk for long-term health effects, but assessing the sequelae of COVID-19 at large scales is challenging. High-throughput methods to efficiently identify new medical problems arising after acute medical events using the electronic health record (EHR) could improve surveillance for long-term consequences of acute medical problems like COVID-19.


Predictive models for abdominal aortic aneurysms using polygenic scores and PheWAS-derived risk factors.

  • Jacklyn N Hellwege‎ et al.
  • Pacific Symposium on Biocomputing. Pacific Symposium on Biocomputing‎
  • 2023‎

Abdominal aortic aneurysms (AAA) are common enlargements of the abdominal aorta which can grow larger until rupture, often leading to death. Detection of AAA is often by ultrasonography and screening recommendations are mostly directed at men over 65 with a smoking history. Recent large-scale genome-wide association studies have identified genetic loci associated with AAA risk. We combined known risk factors, polygenic risk scores (PRS) and precedent clinical diagnoses from electronic health records (EHR) to develop predictive models for AAA, and compared performance against screening recommendations. The PRS included genome-wide summary statistics from the Million Veteran Program and FinnGen (10,467 cases, 378,713 controls of European ancestry), with optimization in Vanderbilt's BioVU and validated in the eMERGE Network, separately across both White and Black participants. Candidate diagnoses were identified through a temporally-oriented Phenome-wide association study in independent EHR data from Vanderbilt, and features were selected via elastic net. We calculated C-statistics in eMERGE for models including PRS, phecodes, and covariates using regression weights from BioVU. The AUC for the full model in the test set was 0.883 (95% CI 0.873-0.892), 0.844 (0.836-0.851) for covariates only, 0.613 (95% CI 0.604-0.622) when using primary USPSTF screening criteria, and 0.632 (95% CI 0.623-0.642) using primary and secondary criteria. Brier scores were between 0.003 and 0.023 for our models indicating good calibration, and net reclassification improvement over combined primary and secondary USPSTF criteria was 0.36-0.60. We provide PRS for AAA which are strongly associated with AAA risk and add to predictive model performance. These models substantially improve identification of people at risk of a AAA diagnosis compared with existing guidelines, with evidence of potential applicability in minority populations.


PheMap: a multi-resource knowledge base for high-throughput phenotyping within electronic health records.

  • Neil S Zheng‎ et al.
  • Journal of the American Medical Informatics Association : JAMIA‎
  • 2020‎

Developing algorithms to extract phenotypes from electronic health records (EHRs) can be challenging and time-consuming. We developed PheMap, a high-throughput phenotyping approach that leverages multiple independent, online resources to streamline the phenotyping process within EHRs.


A Mendelian Randomization Approach Using 3-HMG-Coenzyme-A Reductase Gene Variation to Evaluate the Association of Statin-Induced Low-Density Lipoprotein Cholesterol Lowering With Noncardiovascular Disease Phenotypes.

  • Ge Liu‎ et al.
  • JAMA network open‎
  • 2021‎

Observational studies suggest that statins, which inhibit 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase, may be associated with beneficial effects in many noncardiovascular diseases.


Inference of Causal Relationships Between Genetic Risk Factors for Cardiometabolic Phenotypes and Female-Specific Health Conditions.

  • Brenda Xiao‎ et al.
  • Journal of the American Heart Association‎
  • 2023‎

Background Cardiometabolic diseases are highly comorbid, but their relationship with female-specific or overwhelmingly female-predominant health conditions (breast cancer, endometriosis, pregnancy complications) is understudied. This study aimed to estimate the cross-trait genetic overlap and influence of genetic burden of cardiometabolic traits on health conditions unique to women. Methods and Results Using electronic health record data from 71 008 ancestrally diverse women, we examined relationships between 23 obstetrical/gynecological conditions and 4 cardiometabolic phenotypes (body mass index, coronary artery disease, type 2 diabetes, and hypertension) by performing 4 analyses: (1) cross-trait genetic correlation analyses to compare genetic architecture, (2) polygenic risk score-based association tests to characterize shared genetic effects on disease risk, (3) Mendelian randomization for significant associations to assess cross-trait causal relationships, and (4) chronology analyses to visualize the timeline of events unique to groups of women with high and low genetic burden for cardiometabolic traits and highlight the disease prevalence in risk groups by age. We observed 27 significant associations between cardiometabolic polygenic scores and obstetrical/gynecological conditions (body mass index and endometrial cancer, body mass index and polycystic ovarian syndrome, type 2 diabetes and gestational diabetes, type 2 diabetes and polycystic ovarian syndrome). Mendelian randomization analysis provided additional evidence of independent causal effects. We also identified an inverse association between coronary artery disease and breast cancer. High cardiometabolic polygenic scores were associated with early development of polycystic ovarian syndrome and gestational hypertension. Conclusions We conclude that polygenic susceptibility to cardiometabolic traits is associated with elevated risk of certain female-specific health conditions.


Selection, optimization, and validation of ten chronic disease polygenic risk scores for clinical implementation in diverse populations.

  • Niall J Lennon‎ et al.
  • medRxiv : the preprint server for health sciences‎
  • 2023‎

Polygenic risk scores (PRS) have improved in predictive performance supporting their use in clinical practice. Reduced predictive performance of PRS in diverse populations can exacerbate existing health disparities. The NHGRI-funded eMERGE Network is returning a PRS-based genome-informed risk assessment to 25,000 diverse adults and children. We assessed PRS performance, medical actionability, and potential clinical utility for 23 conditions. Standardized metrics were considered in the selection process with additional consideration given to strength of evidence in African and Hispanic populations. Ten conditions were selected with a range of high-risk thresholds: atrial fibrillation, breast cancer, chronic kidney disease, coronary heart disease, hypercholesterolemia, prostate cancer, asthma, type 1 diabetes, obesity, and type 2 diabetes. We developed a pipeline for clinical PRS implementation, used genetic ancestry to calibrate PRS mean and variance, created a framework for regulatory compliance, and developed a PRS clinical report. eMERGE's experience informs the infrastructure needed to implement PRS-based implementation in diverse clinical settings.


Projecting genetic associations through gene expression patterns highlights disease etiology and drug mechanisms.

  • Milton Pividori‎ et al.
  • Nature communications‎
  • 2023‎

Genes act in concert with each other in specific contexts to perform their functions. Determining how these genes influence complex traits requires a mechanistic understanding of expression regulation across different conditions. It has been shown that this insight is critical for developing new therapies. Transcriptome-wide association studies have helped uncover the role of individual genes in disease-relevant mechanisms. However, modern models of the architecture of complex traits predict that gene-gene interactions play a crucial role in disease origin and progression. Here we introduce PhenoPLIER, a computational approach that maps gene-trait associations and pharmacological perturbation data into a common latent representation for a joint analysis. This representation is based on modules of genes with similar expression patterns across the same conditions. We observe that diseases are significantly associated with gene modules expressed in relevant cell types, and our approach is accurate in predicting known drug-disease pairs and inferring mechanisms of action. Furthermore, using a CRISPR screen to analyze lipid regulation, we find that functionally important players lack associations but are prioritized in trait-associated modules by PhenoPLIER. By incorporating groups of co-expressed genes, PhenoPLIER can contextualize genetic associations and reveal potential targets missed by single-gene strategies.


Selection, optimization and validation of ten chronic disease polygenic risk scores for clinical implementation in diverse US populations.

  • Niall J Lennon‎ et al.
  • Nature medicine‎
  • 2024‎

Polygenic risk scores (PRSs) have improved in predictive performance, but several challenges remain to be addressed before PRSs can be implemented in the clinic, including reduced predictive performance of PRSs in diverse populations, and the interpretation and communication of genetic results to both providers and patients. To address these challenges, the National Human Genome Research Institute-funded Electronic Medical Records and Genomics (eMERGE) Network has developed a framework and pipeline for return of a PRS-based genome-informed risk assessment to 25,000 diverse adults and children as part of a clinical study. From an initial list of 23 conditions, ten were selected for implementation based on PRS performance, medical actionability and potential clinical utility, including cardiometabolic diseases and cancer. Standardized metrics were considered in the selection process, with additional consideration given to strength of evidence in African and Hispanic populations. We then developed a pipeline for clinical PRS implementation (score transfer to a clinical laboratory, validation and verification of score performance), and used genetic ancestry to calibrate PRS mean and variance, utilizing genetically diverse data from 13,475 participants of the All of Us Research Program cohort to train and test model parameters. Finally, we created a framework for regulatory compliance and developed a PRS clinical report for return to providers and for inclusion in an additional genome-informed risk assessment. The initial experience from eMERGE can inform the approach needed to implement PRS-based testing in diverse clinical settings.


Natural language processing to identify lupus nephritis phenotype in electronic health records.

  • Yu Deng‎ et al.
  • BMC medical informatics and decision making‎
  • 2024‎

Systemic lupus erythematosus (SLE) is a rare autoimmune disorder characterized by an unpredictable course of flares and remission with diverse manifestations. Lupus nephritis, one of the major disease manifestations of SLE for organ damage and mortality, is a key component of lupus classification criteria. Accurately identifying lupus nephritis in electronic health records (EHRs) would therefore benefit large cohort observational studies and clinical trials where characterization of the patient population is critical for recruitment, study design, and analysis. Lupus nephritis can be recognized through procedure codes and structured data, such as laboratory tests. However, other critical information documenting lupus nephritis, such as histologic reports from kidney biopsies and prior medical history narratives, require sophisticated text processing to mine information from pathology reports and clinical notes. In this study, we developed algorithms to identify lupus nephritis with and without natural language processing (NLP) using EHR data from the Northwestern Medicine Enterprise Data Warehouse (NMEDW).


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: