Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 2 papers out of 2 papers

Acetylation-Dependent Regulation of Notch Signaling in Macrophages by SIRT1 Affects Sepsis Development.

  • Xiaozhi Bai‎ et al.
  • Frontiers in immunology‎
  • 2018‎

SIRT1 is reported to participate in macrophage differentiation and affect sepsis, and Notch signaling is widely reported to influence inflammation and macrophage activation. However, the specific mechanisms through which SIRT1 regulates sepsis and the relationship between SIRT1 and Notch signaling remain poorly elucidated. In this study, we found that SIRT1 levels were decreased in sepsis both in vitro and in vivo and that SIRT1 regulation of Notch signaling affected inflammation. In lipopolysaccharide (LPS)-induced sepsis, the levels of Notch signaling molecules, including Notch1, Notch2, Hes1, and intracellular domain of Notch (NICD), were increased. However, NICD could be deacetylated by SIRT1, and this led to the suppression of Notch signaling. Notably, in macrophages from myeloid-specific RBP-J-/- mice, in which Notch signaling is inhibited, pro-inflammatory cytokines were expressed at lower levels than in macrophages from wild-type littermates and in RBP-J-/- macrophages, and the NF-κB pathway was also inhibited. Accordingly, in the case of RBP-J-/- mice, LPS-induced inflammation and mortality were lower than in wild-type mice. Our results indicate that SIRT1 inhibits Notch signaling through NICD deacetylation and thus ultimately alleviates sepsis.


Swine-Derived Probiotic Lactobacillus plantarum Modulates Porcine Intestinal Endogenous Host Defense Peptide Synthesis Through TLR2/MAPK/AP-1 Signaling Pathway.

  • Jing Wang‎ et al.
  • Frontiers in immunology‎
  • 2019‎

Host defense peptides (HDPs) have antimicrobial and immunoregulatory activities and are involved in epithelial innate immune defense. Dietary modulation of endogenous HDP synthesis is an effective way to boost the host innate immune system. This study aimed to investigate the role of the probiotic Lactobacillus plantarum strain ZLP001 in porcine HDP induction and the underlying mechanism. To this end, we evaluated the stimulatory effect of L. plantarum ZLP001 on HDP expression in piglet intestinal tissue in vivo and porcine IPEC-J2 cells and 3D4/31 cells in vitro, and we examined the underlying intracellular signaling pathway in IPEC-J2 cells. L. plantarum ZLP001 treatment increased the mRNA expression of jejunal and ileal HDPs in weaned piglets. In IPEC-J2 and 3D4/31 cells, L. plantarum ZLP001 stimulated HDP expression, but different HDP induction patterns were observed, with the various HDPs exhibiting different relative mRNA levels in each cell line. L. plantarum ZLP001 induced porcine HDP expression through toll-like receptor (TLR)2 recognition as evidenced by the fact that HDP expression was suppressed in TLR2-knockdown IPEC-J2 cells. Furthermore, we found that L. plantarum ZLP001 activated the extracellular signal-regulated kinase (ERK)1/2 and c-jun N-terminal kinase (JNK) signaling pathways, as indicated by enhanced phosphorylation of both ERK1/2 and JNK and the fact that HDP expression was suppressed upon inhibition of ERK1/2 and JNK. Furthermore, L. plantarum ZLP001 activated c-fos and c-jun transcription factor phosphorylation and activity. We conclude that L. plantarum ZLP001 induces porcine HDP expression in vivo and in vitro, and the induction seems to be regulated via TLR2 as well as the ERK1/2/JNK and c-jun/c-fos signaling pathways. Modulation of endogenous HDPs mediated by L. plantarum ZLP001 might be a promising approach to improving intestinal health and enhancing diarrhea resistance in weaning piglets.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: