Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 168 papers

Small activating ribonucleic acid reverses tyrosine kinase inhibitor resistance in epidermal growth factor receptor-mutant lung cancer by increasing the expression of phosphatase and tensin homolog.

  • Meng Li‎ et al.
  • Thoracic cancer‎
  • 2016‎

Epidermal growth factor receptor-tyrosine kinase inhibitors (TKI-EGFRs) present a new prospect for the treatment of lung cancer. However, in clinical application, the majority of patients become TKI resistant within a year. More and more studies have shown that a loss of phosphatase and tensin homolog (PTEN) expression is associated with TKI resistance. An alternative method of upregulating PTEN expression may reverse TKI resistance.


Regulation of tumor suppressor EAF2 polyubiquitination by ELL1 and SIAH2 in prostate cancer cells.

  • Xinpei Yu‎ et al.
  • Oncotarget‎
  • 2016‎

RNA Polymerase II Elongation Factor (ELL)-associated factor 2 (EAF2) is a tumor suppressor frequently down-regulated in human prostate cancer. We previously reported that its binding partner ELL1 can enhance EAF2 protein stability and activity. Here we show that EAF2 can be polyubiquitinated and its degradation blocked by proteasome inhibitor. Co-immunoprecipitation detected EAF2 binding to SIAH2, an E3 ligase, and SIAH2 overexpression enhanced polyubiquitination of EAF2. Co-transfection of EAF2 binding partner ELL1 blocked EAF2 ubiquitination, providing a mechanism for EAF2 stabilization. Finally, EAF2K81R mutant, which exhibits reduced polyubiquitination and increased stability, was more potent than wild-type EAF2 in apoptosis induction. These findings suggest that SIAH2 is an E3 ligase for EAF2 polyubiquitination and ELL1 can enhance EAF2 level and function by blocking its polyubiquitination.


Genome-wide association study identifies new susceptibility loci for adolescent idiopathic scoliosis in Chinese girls.

  • Zezhang Zhu‎ et al.
  • Nature communications‎
  • 2015‎

Adolescent idiopathic scoliosis (AIS) is a structural deformity of the spine affecting millions of children. As a complex disease, the genetic aetiology of AIS remains obscure. Here we report the results of a four-stage genome-wide association study (GWAS) conducted in a sample of 4,317 AIS patients and 6,016 controls. Overall, we identify three new susceptibility loci at 1p36.32 near AJAP1 (rs241215, Pcombined=2.95 × 10(-9)), 2q36.1 between PAX3 and EPHA4 (rs13398147, Pcombined=7.59 × 10(-13)) and 18q21.33 near BCL-2 (rs4940576, Pcombined=2.22 × 10(-12)). In addition, we refine a previously reported region associated with AIS at 10q24.32 (rs678741, Pcombined=9.68 × 10(-37)), which suggests LBX1AS1, encoding an antisense transcript of LBX1, might be a functional variant of AIS. This is the first GWAS investigating genetic variants associated with AIS in Chinese population, and the findings provide new insight into the multiple aetiological mechanisms of AIS.


The effects of Cordyceps sinensis phytoestrogen on estrogen deficiency-induced osteoporosis in ovariectomized rats.

  • Da-wei Zhang‎ et al.
  • BMC complementary and alternative medicine‎
  • 2014‎

Isoflavones are naturally occurring plant chemicals belonging to the "phytoestrogen" class. The aim of the present study was to examine the effects of isoflavones obtained from Cordyceps sinensis (CSIF) on development of estrogen deficiency-induced osteoporosis in ovariectomized rats.


Real-time adsorption and action of expansin on cellulose.

  • Yuhao Duan‎ et al.
  • Biotechnology for biofuels‎
  • 2018‎

Biological pretreatment is an environmentally safe method for disrupting recalcitrant structures of lignocellulose and thereby improving their hydrolysis efficiency. Expansin and expansin-like proteins act synergistically with cellulases during hydrolysis. A systematic analysis of the adsorption behavior and mechanism of action of expansin family proteins can provide a basis for the development of highly efficient pretreatment methods for cellulosic substrates using expansins.


STMN-1 is a potential marker of lymph node metastasis in distal esophageal adenocarcinomas and silencing its expression can reverse malignant phenotype of tumor cells.

  • Javed Akhtar‎ et al.
  • BMC cancer‎
  • 2014‎

Distal esophageal adenocarcinoma is a highly aggressive neoplasm. Despite advances in diagnosis and therapy, the prognosis is still poor. Stathmin (STMN-1) is a ubiquitously expressed microtubule destabilizing phosphoprotein. It promotes the disassembly of microtubules and prevents assembly. STMN-1 can cause uncontrolled cell proliferation when mutated and not functioning properly. Recently, found to be overexpressed in many types of human cancers. However, its clinical significance remains elusive in distal esophageal adenocarcinoma. Here, we reported for the first time that STMN-1 is highly overexpressed in adenocarcinomas of the distal esophagus and strongly associated with lymph node metastasis.


Cholesterol Modification of Smoothened Is Required for Hedgehog Signaling.

  • Xu Xiao‎ et al.
  • Molecular cell‎
  • 2017‎

Hedgehog (Hh) has been known as the only cholesterol-modified morphogen playing pivotal roles in development and tumorigenesis. A major unsolved question is how Hh signaling regulates the activity of Smoothened (SMO). Here, we performed an unbiased biochemical screen and identified that SMO was covalently modified by cholesterol on the Asp95 (D95) residue through an ester bond. This modification was inhibited by Patched-1 (Ptch1) but enhanced by Hh. The SMO(D95N) mutation, which could not be cholesterol modified, was refractory to Hh-stimulated ciliary localization and failed to activate downstream signaling. Furthermore, homozygous SmoD99N/D99N (the equivalent residue in mouse) knockin mice were embryonic lethal with severe cardiac defects, phenocopying the Smo-/- mice. Together, the results of our study suggest that Hh signaling transduces to SMO through modulating its cholesterylation and provides a therapeutic opportunity to treat Hh-pathway-related cancers by targeting SMO cholesterylation.


VRK1 promotes cisplatin resistance by up-regulating c-MYC via c-Jun activation and serves as a therapeutic target in esophageal squamous cell carcinoma.

  • Zhen-Chuan Liu‎ et al.
  • Oncotarget‎
  • 2017‎

Esophageal squamous cell carcinoma (ESCC) is a common malignant disease characterized by poor prognosis. Chemoresistance remains a major cause of ESCC relapse. Vaccinia-related kinase 1 (VRK1) has previously been identified as a cancer-related gene. However, there is little research demonstrating an association between VRK1 and ESCC. In this study, we show that VRK1 is overexpressed in ESCC primary tumor samples and cell lines. VRK1 expression was significantly correlated with clinical characteristics and predicted poor outcomes in ESCC patients. Functionally, knockdown of VRK1 inhibited ESCC cell proliferation, survival, migration and invasion; conversely, VRK1 overexpression produced the opposite effects. Furthermore, we found that up-regulation of VRK1 promoted cisplatin (CDDP) resistance in ESCC both in vitro and in vivo, whereas knockdown of VRK1 reduced this resistance. Further studies verified that VRK1 phosphorylated c-Jun and that the VRK1/c-Jun pathway contributed to CDDP resistance in ESCC. Mechanistically, a dual luciferase reporter assay revealed that c-Jun transcriptionally activated the expression of c-MYC. Silencing c-MYC abolished the c-Jun-mediated CDDP resistance of ESCC cells. A Kaplan-Meier analysis indicated that c-MYC is a potential prognostic factor in ESCC. Finally, luteolin, a VRK1 inhibitor, attenuated the malignant biological behaviors and CDDP resistance in ESCC cells. Collectively, we conclude that VRK1 promotes CDDP resistance through c-MYC by activating c-Jun and potentiating a malignant phenotype in ESCC. Our studies provide novel insight into the role of VRK1 in carcinogenesis and indicate that VRK1 can serve as a potential therapeutic target in ESCC.


Dynamically expressed microRNA-15b modulates the activities of CD8+ T lymphocytes in mice with Lewis lung carcinoma.

  • Guocheng Zhong‎ et al.
  • Journal of translational medicine‎
  • 2013‎

CD8+ T cells are key members of adaptive immunity against tumorigenesis. As subset of CD8+ T cells, effector T cells (Te) and memory T cells (Tm) have different biological activities. The former can kill tumor cells but come into apoptosis in a certain period and the latter is static with the ability of self-renewal. Previous studies showed that microRNAs (miRNA) played critical roles in regulating adaptive immunity. This study aimed to identify the different expression of miRNAs between Te and Tm cells in tumor-bearing mice and to sort out the target miRNAs which can be regulated to improve anti-tumor activities of CD8+ T cells.


Structural differences between Abeta(1-40) intermediate oligomers and fibrils elucidated by proteolytic fragmentation and hydrogen/deuterium exchange.

  • Aming Zhang‎ et al.
  • Biophysical journal‎
  • 2009‎

The aggregation of amyloid-beta protein (Abeta) in vivo is a critical pathological event in Alzheimer's disease. Although more and more evidence shows that the intermediate oligomers are the primary neurotoxic species in Alzheimer's disease, the particular structural features responsible for the toxicity of these intermediates are poorly understood. We measured the peptide level solvent accessibility of multiple Abeta(1-40) aggregated states using hydrogen exchange detected by mass spectrometry. A gradual reduction in solvent accessibility, spreading from the C-terminal region to the N-terminal region was observed with ever more aggregated states of Abeta peptide. The observed hydrogen exchange protection begins with reporter peptides 20-34 and 35-40 in low molecular weight oligomers found in fresh samples and culminates with increasing solvent protection of reporter peptide 1-16 in long time aged fibrillar species. The more solvent exposed structure of intermediate oligomers in the N-termini relative to well-developed fibrils provides a novel explanation for the structure-dependent neurotoxicity of soluble oligomers reported previously.


Combined bioinformatics analysis reveals gene expression and DNA methylation patterns in osteoarthritis.

  • Delei Song‎ et al.
  • Molecular medicine reports‎
  • 2018‎

Osteoarthritis (OA) is a common type of arthritis, which may cause pain and disability. Alterations in gene expression and DNA methylation have been proven to be associated with the development of OA. The aim of the present study was to identify potential therapeutic targets and associated processes for OA via the combined analysis of gene expression and DNA methylation datasets. The gene expression and DNA methylation profiles were obtained from the Gene Expression Omnibus, and differentially expressed genes (DEGs) and differentially methylated sites (DMSs) were identified in the present study, using R programming software. The enriched functions of DEGs and DMSs were obtained via the Database for Annotation, Visualization and Integrated Discovery. Finally, cross analysis of DEGs and DMSs was performed to identify genes that exhibited differential expression and methylation simultaneously. The protein‑protein interaction (PPI) network of overlaps between DEGs and DMSs was obtained using the Human Protein Reference Database; the topological properties of PPI network overlaps were additionally obtained. Hub genes in the PPI network were further confirmed via reverse transcription‑quantitative polymerase chain reaction (RT‑qPCR). The results of the present study revealed that the majority of DEGs and DMSs were upregulated and hypomethylated in patients with OA, respectively. DEGs and DMSs were primarily involved in inflammatory, immune and gene expression regulation‑associated processes and pathways. Cross analysis revealed 30 genes that exhibited differential expression and methylation in OA simultaneously. Topological analysis of the PPI network revealed that numerous genes, including G protein subunit α1 (GNAI1), runt related transcription factor 2 (RUNX2) and integrin subunit β2 (ITGB2), may be involved in the development of OA. Additionally, RT‑qPCR analysis of GNAI1, RUNX2 and ITGB2 provided further confirmation. Numerous known and novel therapeutic targets were obtained via network analysis. The results of the present study may be beneficial for the diagnosis and treatment of OA.


Molecularly Imprinted Core-Shell CdSe@SiO2/CDs as a Ratiometric Fluorescent Probe for 4-Nitrophenol Sensing.

  • Mingyue Liu‎ et al.
  • Nanoscale research letters‎
  • 2018‎

4-Nitrophenol (4-NP) is a priority pollutant in water and is both carcinogenic and genotoxic to humans and wildlife even at very low concentrations. Thus, we herein fabricated a novel molecularly imprinted core-shell nanohybrid as a ratiometric fluorescent sensor for the highly sensitive and selective detection of 4-NP. This sensor was functioned by the transfer of fluorescence resonance energy between photoluminescent carbon dots (CDs) and 4-NP. This sensor was synthesized by linking organosilane-functionalized CDs to silica-coated CdSe quantum dots (CdSe@SiO2) via Si-O bonds. The nanohybrids were further modified by anchoring a molecularly imprinted polymer (MIP) layer on the ratiometric fluorescent sensor through a facile sol-gel polymerization method. The morphology, chemical structure, and optical properties of the resulting molecularly imprinted dual-emission fluorescent probe were characterized by transmission electron microscopy and spectroscopic analysis. The probe was then applied in the detection of 4-NP and exhibited good linearity between 0.051 and 13.7 μg/mL, in addition to a low detection limit of 0.026 μg/mL. Furthermore, the simplicity, reliability, high selectivity, and high sensitivity of the developed sensor demonstrate that the combination of MIPs and ratiometric fluorescence allows the preparation of excellent fluorescent sensors for the detection of trace or ultra-trace analytes.


SRR intronic variation inhibits expression of its neighbouring SMG6 gene and protects against temporal lobe epilepsy.

  • Hua Tao‎ et al.
  • Journal of cellular and molecular medicine‎
  • 2018‎

D-serine is a predominant N-methyl-D-aspartate receptor co-agonist with glutamate, and excessive activation of the receptor plays a substantial role in epileptic seizures. Serine racemase (SRR) is responsible for transforming L-serine to D-serine. In this study, we aimed to investigate the genetic roles of SRR and a neighbouring gene, nonsense-mediated mRNA decay factor (SMG6), in temporal lobe epilepsy (TLE). Here, a total of 496 TLE patients and 528 healthy individuals were successfully genotyped for three SRR tag single nucleotide polymorphisms. The frequencies of the GG genotype at rs4523957 T > G were reduced in the TLE cases in the initial cohort (cohort 1) and were confirmed in the independent cohort (cohort 2). An analysis of all TLE cases in cohort 1 + 2 revealed that the seizure frequency and drug-resistant incidence were significantly decreased in carriers of the GG genotype at rs4523957. Intriguingly, the activity of the SMG6 promoter with the mutant allele at rs4523957 decreased by 22% in the dual-luciferase assay, and up-regulated expression of SMG6 was observed in an epilepsy rat model. This study provides the first demonstration that the GG genotype is a protective marker against TLE. In particular, variation at rs4523957 likely inhibits SMG6 transcription and plays a key role against susceptibility to and severity of TLE. The significance of SMG6 hyperfunction in epileptic seizures deserves to be investigated in future studies.


Discovery and Molecular Basis of a Diverse Set of Polycomb Repressive Complex 2 Inhibitors Recognition by EED.

  • Ling Li‎ et al.
  • PloS one‎
  • 2017‎

Polycomb repressive complex 2 (PRC2), a histone H3 lysine 27 methyltransferase, plays a key role in gene regulation and is a known epigenetics drug target for cancer therapy. The WD40 domain-containing protein EED is the regulatory subunit of PRC2. It binds to the tri-methylated lysine 27 of the histone H3 (H3K27me3), and through which stimulates the activity of PRC2 allosterically. Recently, we disclosed a novel PRC2 inhibitor EED226 which binds to the K27me3-pocket on EED and showed strong antitumor activity in xenograft mice model. Here, we further report the identification and validation of four other EED binders along with EED162, the parental compound of EED226. The crystal structures for all these five compounds in complex with EED revealed a common deep pocket induced by the binding of this diverse set of compounds. This pocket was created after significant conformational rearrangement of the aromatic cage residues (Y365, Y148 and F97) in the H3K27me3 binding pocket of EED, the width of which was delineated by the side chains of these rearranged residues. In addition, all five compounds interact with the Arg367 at the bottom of the pocket. Each compound also displays unique features in its interaction with EED, suggesting the dynamics of the H3K27me3 pocket in accommodating the binding of different compounds. Our results provide structural insights for rational design of novel EED binder for the inhibition of PRC2 complex activity.


Prostate-Specific Deletion of Cdh1 Induces Murine Prostatic Inflammation and Bladder Overactivity.

  • Laura E Pascal‎ et al.
  • Endocrinology‎
  • 2021‎

Benign prostatic hyperplasia (BPH) is an age-related debilitating prostatic disease that is frequently associated with prostatic inflammation and bothersome lower urinary tract symptoms (LUTS). Animal models have shown that formalin- and bacterial-induced prostatic inflammation can induce bladder dysfunction; however, the underlying mechanisms contributing to prostatic inflammation in BPH and bladder dysfunction are not clear. We previously reported that E-cadherin expression in BPH is downregulated in hyperplastic nodules compared with expression in adjacent normal tissues. Here, we explored the potential consequences of prostatic E-cadherin downregulation on the prostate and bladder in vivo using an inducible murine model of prostate luminal epithelial-specific deletion of Cdh1. The prostate-specific antigen (PSA)-CreERT2 transgenic mouse strain expressing tamoxifen-inducible CreERT2 recombinase driven by a 6-kb human PSA promoter/enhancer was crossed with the B6.129-Cdh1tm2Kem/J mouse to generate bigenic PSA-CreERT2/Cdh1-/- mice. Deletion of E-cadherin was induced by transient administration of tamoxifen when mice reached sexual maturity (7 weeks of age). At 21 to 23 weeks of age, the prostate, bladder, and prostatic urethra were examined histologically, and bladder function was assessed using void spot assays and cystometry. Mice with Cdh1 deletion had increased prostatic inflammation, prostatic epithelial hyperplasia, and stromal changes at 21 to 23 weeks of age, as well as changes in bladder voiding function compared with age-matched controls. Thus, loss of E-cadherin in the murine prostate could result in prostatic defects that are characteristic of BPH and LUTS, suggesting that E-cadherin downregulation could be a driving force in human BPH development and progression.


Changes in apoptosis, proliferation and T lymphocyte subtype on thymic cells of SPF chickens infected with reticuloendotheliosis virus.

  • Lisheng Fu‎ et al.
  • Molecular immunology‎
  • 2019‎

Reticuloendotheliosis virus (REV), an avian retrovirus is able to infect a variety of birds and can cause immunosuppression. The aim of this study was to investigate the relationship of thymic lymphocytes apoptosis, proliferation and T cell subtype with immunosuppression. In this study, a hundred and twenty one-day old SPF chickens were randomly divided into control groups (group C) and a REV infection groups (group I). The chickens of group I received intraperitoneal injections of REV with 104.62/0.1 ml TCID50. On day 14, 21, 28 and 35 post-inoculation, the chickens of C group and I group were sacrificed by cardiac puncture blood collection, and the thymic lymphocytes was sterile collected. The proliferation ability of lymphocytes was tested by Cell Counting Kit-8. Flow cytometry was performed to detect apoptosis, cell cycle stage and the change in T cell subtype. The RNA genome copy numbers of REV virus were detected using real-time PCR. Real-time PCR and western blotting were performed to analyze the expression of CyclinD1 and Bcl-2. Our results showed that REV genome copy number steadily declined, the proliferation potential of thymic lymphocytes was inhibited, lymphocytes apoptosed, the ratio of CD4+/CD8+ decreased and the expression of CyclinD1 and Bcl-2 were firstly inhibited, then rapidly recovered. Thus, immunosuppression lead by REV is closely related to the change of T cell subtype, apoptosis, and proliferation of thymic lymphocytes.


Robust organ size requires robust timing of initiation orchestrated by focused auxin and cytokinin signalling.

  • Mingyuan Zhu‎ et al.
  • Nature plants‎
  • 2020‎

Organ size and shape are precisely regulated to ensure proper function. The four sepals in each Arabidopsis thaliana flower must maintain the same size throughout their growth to continuously enclose and protect the developing bud. Here we show that DEVELOPMENT RELATED MYB-LIKE 1 (DRMY1) is required for both timing of organ initiation and proper growth, leading to robust sepal size in Arabidopsis. Within each drmy1 flower, the initiation of some sepals is variably delayed. Late-initiating sepals in drmy1 mutants remain smaller throughout development, resulting in variability in sepal size. DRMY1 focuses the spatiotemporal signalling patterns of the plant hormones auxin and cytokinin, which jointly control the timing of sepal initiation. Our findings demonstrate that timing of organ initiation, together with growth and maturation, contribute to robust organ size.


TGR5 promotes cholangiocarcinoma by interacting with mortalin.

  • Ai-Di Li‎ et al.
  • Experimental cell research‎
  • 2020‎

Takeda-G-protein-receptor-5 (TGR5) is a G-protein-coupled receptor (GPCR) activated by bile acids, and mortalin is a multipotent chaperone of the HSP70 family. In the present study, TGR5 was detected by immunohistochemistry (IHC) in extrahepatic cholangiocarcinoma (ECC) specimens, and TGR5 expression in ECC tissues and adjacent tissues was compared. In vitro TGR5 was overexpressed and knocked down in human intrahepatic cholangiocarcinoma (ICC) cell line RBE and human extrahepatic cholangiocarcinoma (ECC) cell line QBC-939 to observe its effects on the biological behavior of cholangiocarcinoma (CC) cells, including proliferation, apoptosis and migration. In vivo xenograft model was constructed to explore the role of TGR5 in CC growth. Proteins that interacted with TGR5 were screened using an immunoprecipitation spectrometry approach, and the identified protein was down-regulated to investigate its contribution to CC growth. The present study demonstrated that TGR5 is highly expressed in CC tissues, and strong TGR5 expression may indicate high malignancy in CC. Furthermore, TGR5 promotes CC cell proliferation, migration, and apoptosis resistance. TGR5 boosts CC growth in vivo. In addition, TGR5 combines with mortalin and regulates mortalin expression in the CC cell line. Mortalin participates in the TGR5-induced increase in CC cell proliferation. In conclusion, TGR5 is of clinical significance based on its implications for the degree of malignancy in patients with CC. Mortalin may be a downstream component regulated by TGR5, and TGR5 promotes cholangiocarcinoma at least partially by interacting with mortalin and upregulating its expression. Both TGR5 and mortalin are positive regulators, and may serve as potential therapeutic targets for CC.


Plasma metabolomic profiling reveals factors associated with dose-adjusted trough concentration of tacrolimus in liver transplant recipients.

  • Huaijun Zhu‎ et al.
  • Frontiers in pharmacology‎
  • 2022‎

Inter- and intrapatient variability of tacrolimus exposure is a vital prognostic risk factor for the clinical outcome of liver transplantation. New factors or biomarkers characterizing tacrolimus disposition is essential for optimal dose prediction in recipients of liver transplant. The aim of the study was to identify potential plasma metabolites associated with the dose-adjusted trough concentration of tacrolimus in liver transplant recipients by using a global metabolomic approach. A total of 693 plasma samples were collected from 137 liver transplant recipients receiving tacrolimus and regular therapeutic drug monitoring. Untargeted metabolomic analysis was performed by ultraperformance liquid chromatography-quadrupole time-of-flight mass spectrometry. Univariate and multivariate analyses with a mixed linear model were conducted, and the results showed that the dose-adjusted tacrolimus trough concentration was associated with 31 endogenous metabolites, including medium- and long-chain acylcarnitines such as stearoylcarnitine (β = 0.222, p = 0.001), microbiota-derived uremic retention solutes such as indolelactic acid (β = 0.194, p = 0.007), bile acids such as taurohyodeoxycholic acid (β = -0.056, p = 0.002), and steroid hormones such as testosterone (β = 0.099, p = 0.001). A multiple linear mixed model including 11 metabolites and clinical information was established with a suitable predictive performance (correlation coefficient based on fixed effects = 0.64 and correlation coefficient based on fixed and random effects = 0.78). These data demonstrated that microbiota-derived uremic retention solutes, bile acids, steroid hormones, and medium- and long-chain acylcarnitines were the main metabolites associated with the dose-adjusted trough concentration of tacrolimus in liver transplant recipients.


Improved antitumor activity against prostate cancer via synergistic targeting of Myc and GFAT-1.

  • Yue Zhang‎ et al.
  • Theranostics‎
  • 2023‎

Inhibition of Myc promotes the regression of many types of tumors, including prostate cancer. However, the success of anti-Myc therapy is hampered by the lack of a strategy to effectively deliver the inhibitors to the tumor site and by the feedback mechanisms that cancer cells use to adapt to metabolic reprogramming. Methods: The effects of Myc inhibitors (10074-G5 or 10058-F4), alone or in combination with 6-diazo-5-oxo-L-norleucine (DON), were evaluated in cultured human or murine prostate cancer cells by cell viability assay, qRT-PCR and Western blot. To facilitate the in vivo therapeutic evaluation, a prodrug conjugate of 10074-G4 and DON (10074-DON) was developed, which could be effectively loaded into a polysaccharide-based nanocarrier (PS). Results: The treatment with Myc inhibitors led to significant induction of glutamine: fructose-6-phosphate amidotransferase-1 (GFAT1) and enhanced protein glycosylation. Mechanistically, Myc inhibition triggered GFAT1 induction through the IREα-Xbp1s pathway. The combination use of Myc inhibitors and GFAT1 inhibitor DON led to a synergistic effect in inhibiting the proliferation and migration of prostate cancer cells. Enhanced in vivo delivery of 10074-DON via the PS nanocarrier led to a significant inhibition of tumor growth along with an improvement in tumor immune microenvironment in several PCa animal models. Conclusion: Simultaneous targeting of Myc and GFAT-1 may represent a novel strategy for the treatment of prostate cancer.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: