Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 6 papers out of 6 papers

Connective tissue growth factor promotes chemotaxis of preosteoblasts through integrin α5 and Ras during tensile force-induced intramembranous osteogenesis.

  • Wei Jiang‎ et al.
  • Scientific reports‎
  • 2021‎

In vertebrates, new bone formation via intramembranous osteogenesis is a critical biological event for development, remodeling, and fracture healing of bones. Chemotaxis of osteoblast lineage cells is an essential cellular process in new bone formation. Connective tissue growth factor (CTGF) is known to exert chemotactic properties on various cells; however, details of CTGF function in the chemotaxis of osteoblast lineage cells and underlying molecular biological mechanisms have not been clarified. The aim of the present study was to evaluate the chemotactic properties of CTGF and its underlying mechanisms during active bone formation through intramembranous osteogenesis. In our mouse tensile force-induced bone formation model, preosteoblasts were aggregated at the osteogenic front of calvarial bones. CTGF was expressed at the osteogenic front, and functional inhibition of CTGF using a neutralizing antibody suppressed the aggregation of preosteoblasts. In vitro experiments using μ-slide chemotaxis chambers showed that a gradient of CTGF induced chemotaxis of preosteoblastic MC3T3-E1 cells, while a neutralizing integrin α5 antibody and a Ras inhibitor inhibited the CTGF-induced chemotaxis of MC3T3-E1 cells. These findings suggest that the CTGF-integrin α5-Ras axis is an essential molecular mechanism to promote chemotaxis of preosteoblasts during new bone formation through intramembranous osteogenesis.


Downregulation of VGLL4 in the progression of esophageal squamous cell carcinoma.

  • Wei Jiang‎ et al.
  • Tumour biology : the journal of the International Society for Oncodevelopmental Biology and Medicine‎
  • 2015‎

VGLL4, a member of the Vestigial-like (VGLL) proteins, has been reported to be dysregulated in several cancer types. However, its function in esophageal squamous cell carcinoma (ESCC) remains poorly understood. Here, it was found that the expression level of VGLL4 was decreased in ESCC tissues. Moreover, forced expression of VGLL4 in ESCC cells inhibited cell growth and migration, while knockdown of VGLL4 expression promoted the tumorigenecity of ESCC cells. Mechanistically, VGLL4 regulated the growth and motility of ESCC cells through downregulating the expression of connective tissue growth factor (CTGF), a known oncogene in the progression of ESCC. Taken together, our study suggested that downregulation of VGLL4 was very important in the progression of ESCC, and restoring the function of VGLL4 might be a promising therapeutic strategy for ESCC.


Chronic Kidney Disease Increases Atrial Fibrillation Inducibility: Involvement of Inflammation, Atrial Fibrosis, and Connexins.

  • Huiliang Qiu‎ et al.
  • Frontiers in physiology‎
  • 2018‎

Chronic kidney disease (CKD) causes atrial structural remodeling and subsequently increases the incidence of atrial fibrillation (AF). Atrial connexins and inflammatory responses may be involved in this remodeling process. In this study, nephrectomy was used to produce the CKD rat model. Three months post-nephrectomy, cardiac structure, function and AF vulnerability were quantified using echocardiography and electrophysiology methods. The left atrial tissue was tested for quantification of fibrosis and inflammation, and for the distribution and expression of connexin (Cx) 40 and Cx43. An echocardiography showed that CKD resulted in the left atrial enlargement and left ventricular hypertrophy, but had no functional changes. CKD caused a significant increase in the AF inducible rate (91.11% in CKD group vs. 6.67% in sham group, P < 0.001) and the AF duration [107 (0-770) s in CKD vs. 0 (0-70) s in sham, P < 0.001] with prolonged P-wave duration. CKD induced severe interstitial fibrosis, activated the transforming growth factor-β1/Smad2/3 pathway with a massive extracellular matrix deposition of collagen type I and α-smooth muscle actin, and matured the NLR (nucleotide-binding domain leucine-rich repeat-containing receptor) pyrin domain-containing protein 3 (NLRP3) inflammasome with an inflammatory cascade response. CKD resulted in an increase in non-phosphorylated-Cx43, a decrease in Cx40 and phosphorylated-Cx43, and lateralized the distribution of Cx40 and Cx43 proteins with upregulations of Rac-1, connective tissue growth factor and N-cadherin. These findings implicate the transforming growth factor-β1/Smad2/3, the NLRP3 inflammasome and the connexins as potential mediators of increased AF vulnerability in CKD.


Combination of Tripterygium wilfordii Hook F and angiotensin receptor blocker synergistically reduces excretion of urinary podocytes in patients with type 2 diabetic kidney disease.

  • Ruixia Ma‎ et al.
  • Biotechnology, biotechnological equipment‎
  • 2015‎

The aim of this study was to investigate whether Tripterygium wilfordii Hook F (TwHF) and irbesartan could synergistically affect the urinary excretion of podocytes and proteins in type 2 diabetic kidney disease (DKD) patients and the underlying mechanisms. Forty DKD patients were divided into a DI group (DKD patients treated with irbesartan alone) and a DTI group (DKD patients treated with Tripterygium wilfordii Hook F and irbesartan). Urinary podocytes were observed by immunofluorescence. Urinary levels of connective tissue growth factor (CTGF) and transforming growth factor-β1 (TGF-β1) were detected by enzyme-linked immunosorbent assay. Immunofluorescence indicated that shed podocytes were not detected in urine samples of normal controls, whereas the detection rate of urinary podocytes was 82.5% in DKD patients. Urinary CTGF and TGF-β1 levels were significantly higher in urinary podocyte-positive DKD patients than in urinary podocyte-negative patients. Furthermore, urinary podocyte excretion was closely correlated with urinary protein excretion and urinary CTGF/TGF-β1 levels. Treatments with TwHF and irbesartan significantly reduced the urinary excretion of proteins and podocytes, and decreased the urinary levels of CTGF and TGF-β1. Our results suggest that urinary podocyte excretion might serve as a predictor for DKD progression. TwHF/irbesartan combination could reduce the urinary excretion of proteins and podocytes synergistically in DKD patients, which might result from the synergistic inhibition of CTGF and TGF-β1 in urine.


The regulation mechanism of different hair types in inner Mongolia cashmere goat based on PI3K-AKT pathway and FGF21.

  • Gao Gong‎ et al.
  • Journal of animal science‎
  • 2022‎

There is genetic diversity of hair types in the Inner Mongolia cashmere goat population. Previous studies have found that fibroblast growth factor 21 (FGF21) and PI3K-AKT signal pathways may be related to different hair types in Inner Mongolia cashmere goats. Therefore, the purpose of this study was to explore the effects of the PI3K-AKT signal pathway on different hair types, the expression of mRNA and protein expression sites of FGF21 in the hair follicles of cashmere goats with different hair types, so as to lay a foundation for understanding the molecular mechanism of different hair types and the role of skin hair follicle development. In this experiment, the skin tissues of long hair type (LHG) and short hair type (SHG) of Inner Mongolia cashmere goat were collected in three key periods of secondary hair follicle growth, namely, anagen (September), catagen (December), and telogen (March). The relative expression of FGF21 and PI3K-AKT signal pathway candidate gene mRNA in different periods and different hair types was detected by real-time fluorescence quantitative technique (qRT-PCR), and the expression site of FGF21 protein was located by immunohistochemical technique. Through qRT-PCR, it was found that the relative expression of FGF21, FGFR1, AKT3, BRCA1, PKN3, SPP1, and GNG4 was significantly different between LHG and SHG. The expression of FGF21 in the skin of LHG was significantly higher than that of SHG in the three periods. Through immunohistochemical test, it was found that FGF21 protein was mainly expressed in primary hair follicle connective tissue sheath, primary hair follicle outer root sheath, secondary hair follicle outer root sheath, and sebaceous glands. It was also found that the expression of LHG skin tissue in the outer root sheath of primary hair follicles was higher than that of SHG in three periods. In summary, it is suggested that the PI3K-AKT signal pathway may play an important role in the formation of different hair types in Inner Mongolia cashmere goats.


Methionine Enkephalin Suppresses Osteocyte Apoptosis Induced by Compressive Force through Regulation of Nuclear Translocation of NFATc1.

  • Chisumi Sogi‎ et al.
  • JBMR plus‎
  • 2020‎

Mechanical stress stimulates bone remodeling, which occurs through bone formation and resorption, resulting in bone adaptation in response to the mechanical stress. Osteocytes perceive mechanical stress loaded to bones and promote bone remodeling through various cellular processes. Osteocyte apoptosis is considered a cellular process to induce bone resorption during mechanical stress-induced bone remodeling, but the underlying molecular mechanisms are not fully understood. Recent studies have demonstrated that neuropeptides play crucial roles in bone metabolism. The neuropeptide, methionine enkephalin (MENK) regulates apoptosis positively and negatively depending on cell type, but the role of MENK in osteocyte apoptosis, followed by bone resorption, in response to mechanical stress is still unknown. Here, we examined the roles and mechanisms of MENK in osteocyte apoptosis induced by compressive force. We loaded compressive force to mouse parietal bones, resulting in a reduction of MENK expression in osteocytes. A neutralizing connective tissue growth factor (CTGF) antibody inhibited the compressive force-induced reduction of MENK. An increase in osteocyte apoptosis in the compressive force-loaded parietal bones was inhibited by MENK administration. Nuclear translocation of NFATc1 in osteocytes in the parietal bones was enhanced by compressive force. INCA-6, which inhibits NFAT translocation into nuclei, suppressed the increase in osteocyte apoptosis in the compressive force-loaded parietal bones. NFATc1-overexpressing MLO-Y4 cells showed increased expression of apoptosis-related genes. MENK administration reduced the nuclear translocation of NFATc1 in osteocytes in the compressive force-loaded parietal bones. Moreover, MENK suppressed Ca2+ influx and calcineurin and calmodulin expression, which are known to induce the nuclear translocation of NFAT in MLO-Y4 cells. In summary, this study shows that osteocytes expressed MENK, whereas the MENK expression was suppressed by compressive force via CTGF signaling. MENK downregulated nuclear translocation of NFATc1 probably by suppressing Ca2+ signaling in osteocytes and consequently inhibiting compressive force-induced osteocyte apoptosis, followed by bone resorption. © 2020 The Authors. JBMR Plus published by Wiley Periodicals, Inc. on behalf of American Society for Bone and Mineral Research.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: