Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 235 papers

A three-pool model dissecting readily releasable pool replenishment at the calyx of held.

  • Jun Guo‎ et al.
  • Scientific reports‎
  • 2015‎

Although vesicle replenishment is critical in maintaining exo-endocytosis recycling, the underlying mechanisms are not well understood. Previous studies have shown that both rapid and slow endocytosis recycle into a very large recycling pool instead of within the readily releasable pool (RRP), and the time course of RRP replenishment is slowed down by more intense stimulation. This finding contradicts the calcium/calmodulin-dependence of RRP replenishment. Here we address this issue and report a three-pool model for RRP replenishment at a central synapse. Both rapid and slow endocytosis provide vesicles to a large reserve pool (RP) ~42.3 times the RRP size. When moving from the RP to the RRP, vesicles entered an intermediate pool (IP) ~2.7 times the RRP size with slow RP-IP kinetics and fast IP-RRP kinetics, which was responsible for the well-established slow and rapid components of RRP replenishment. Depletion of the IP caused the slower RRP replenishment observed after intense stimulation. These results establish, for the first time, a realistic cycling model with all parameters measured, revealing the contribution of each cycling step in synaptic transmission. The results call for modification of the current view of the vesicle recycling steps and their roles.


The promotion of angiogenesis induced by three-dimensional porous beta-tricalcium phosphate scaffold with different interconnection sizes via activation of PI3K/Akt pathways.

  • Xin Xiao‎ et al.
  • Scientific reports‎
  • 2015‎

The porous architectural characteristics of biomaterials play an important role in scaffold revascularization. However, no consensus exists regarding optimal interconnection sizes for vascularization and its scaffold bioperformance with different interconnection sizes. Therefore, a series of disk-type beta-tricalcium phosphates with the same pore sizes and variable interconnections were produced to evaluate how the interconnection size influenced biomaterial vascularization in vitro and in vivo. We incubated human umbilical vein endothelial cells on scaffolds with interconnections of various sizes. Results showed that scaffolds with a 150 μm interconnection size ameliorated endothelial cell function evidenced by promoting cell adhesion and migration, increasing cell proliferation and enhancing expression of platelet-endothelial cell adhesion molecules and vascular endothelial growth factor. In vivo study was performed on rabbit implanted with scaffolds into the bone defect on femoral condyles. Implantation with scaffolds with 150 μm interconnection size significantly improved neovascularization as shown by micro-CT as compared to scaffolds with 100 and 120 μm interconnection sizes. Moreover, the aforementioned positive effects were abolished by blocking PI3K/Akt/eNOS pathway with LY-294002. Our study explicitly demonstrates that the scaffold with 150 μm interconnection size improves neovascularization via the PI3K/Akt pathway and provides a target for biomaterial inner structure modification to attain improved clinical performance in implant vascularization.


In situ drug-receptor binding kinetics in single cells: a quantitative label-free study of anti-tumor drug resistance.

  • Wei Wang‎ et al.
  • Scientific reports‎
  • 2014‎

Many drugs are effective in the early stage of treatment, but patients develop drug resistance after a certain period of treatment, causing failure of the therapy. An important example is Herceptin, a popular monoclonal antibody drug for breast cancer by specifically targeting human epidermal growth factor receptor 2 (Her2). Here we demonstrate a quantitative binding kinetics analysis of drug-target interactions to investigate the molecular scale origin of drug resistance. Using a surface plasmon resonance imaging, we measured the in situ Herceptin-Her2 binding kinetics in single intact cancer cells for the first time, and observed significantly weakened Herceptin-Her2 interactions in Herceptin-resistant cells, compared to those in Herceptin-sensitive cells. We further showed that the steric hindrance of Mucin-4, a membrane protein, was responsible for the altered drug-receptor binding. This effect of a third molecule on drug-receptor interactions cannot be studied using traditional purified protein methods, demonstrating the importance of the present intact cell-based binding kinetics analysis.


Revealing origin of decrease in potency of darunavir and amprenavir against HIV-2 relative to HIV-1 protease by molecular dynamics simulations.

  • Jianzhong Chen‎ et al.
  • Scientific reports‎
  • 2014‎

Clinical inhibitors Darunavir (DRV) and Amprenavir (APV) are less effective on HIV-2 protease (PR2) than on HIV-1 protease (PR1). To identify molecular basis associated with the lower inhibition, molecular dynamics (MD) simulations and molecular mechanics Poisson-Boltzmann surface area (MM-PBSA) calculations were performed to investigate the effectiveness of the PR1 inhibitors DRV and APV against PR1/PR2. The rank of predicted binding free energies agrees with the experimental determined one. Moreover, our results show that two inhibitors bind less strongly to PR2 than to PR1, again in agreement with the experimental findings. The decrease in binding free energies for PR2 relative to PR1 is found to arise from the reduction of the van der Waals interactions induced by the structural adjustment of the triple mutant V32I, I47V and V82I. This result is further supported by the difference between the van der Waals interactions of inhibitors with each residue in PR2 and in PR1. The results from the principle component analysis suggest that inhibitor binding tends to make the flaps of PR2 close and the one of PR1 open. We expect that this study can theoretically provide significant guidance and dynamics information for the design of potent dual inhibitors targeting PR1/PR2.


The use of targeted exome sequencing in genetic diagnosis of young patients with severe hypercholesterolemia.

  • Long Jiang‎ et al.
  • Scientific reports‎
  • 2016‎

Familial hypercholesterolemia (FH) is an autosomal dominant disorder. Although genetic testing is an important tool for detecting FH-causing mutations in patients, diagnostic methods for young patients with severe hypercholesterolemia are understudied. This study compares the target exome sequencing (TES) technique with the DNA resequencing array technique on young patients with severe hypercholesterolemia. A total of 20 unrelated patients (mean age 14.8 years) with total cholesterol > 10 mmol/L were included. 12 patient samples were processed by DNA resequencing array, 14 patient samples were processed by TES, and 6 patient samples were processed by both methods. Functional characterization of novel mutations was performed by flow cytometry. The mutation detection rate (MDR) of DNA resequencing array was 75%, while the MDR of TES was 100%. A total of 27 different mutations in the LDLR were identified, including 3 novel mutations and 8 mutations with previously unknown pathogenicity. Functional characterization of c.673delA, c.1363delC, p.Leu575Phe and p.Leu582Phe variants found that all of them are pathogenic. Additionally, 7 patients were diagnosed with Heterozygous FH (HeFH) in which lipid levels were significantly higher than common HeFH patients. This data indicates that TES is a very efficient tool for genetic diagnosis in young patients with severe hypercholesterolemia.


Qishen granules inhibit myocardial inflammation injury through regulating arachidonic acid metabolism.

  • Chun Li‎ et al.
  • Scientific reports‎
  • 2016‎

Qishen granules (QSG), a traditional Chinese medicine, have been prescribed widely in the treatment of coronary heart diseases. Previous studies demonstrated that QSG had anti-inflammatory and cardio-protective effects in mice with acute myocardial infarction (AMI). However, the mechanisms by which QSG attenuate inflammation and prevent post-AMI heart failure (HF) are still unclear. In this study, we explored the anti-inflammatory mechanisms of QSG by in vitro and in vivo experiments. A novel inflammatory injury model of H9C2 cells was induced by lipopolysaccharide (LPS)-stimulated macrophage-conditioned media (CM). An animal model of AMI was conducted by ligation of left anterior descending (LAD) coronary artery in mice. We found that QSG inhibited release of cytokines from LPS-stimulated RAW 264.7 macrophages and protected H9C2 cardiac cells against CM-induced injury. In vivo results showed that QSG administration could improve cardiac functions and alter pathological changes in model of AMI. QSG regulated multiple key molecules, including phospholipases A2 (PLA2), cyclooxygenases (COXs) and lipoxygenases (LOXs), in arachidonic acid metabolism pathway. Interestingly, QSG also targeted TNF-α-NF-κB and IL-6-JAK2-STAT3 signaling pathways. Taken together, QSG achieve synergistic effects in mitigating post-AMI HF by regulating multiple targets in inflammatory pathways. This study provides insights into anti-inflammatory therapeutics in managing HF after AMI.


Anti-tumor activity of SL4 against breast cancer cells: induction of G2/M arrest through modulation of the MAPK-dependent p21 signaling pathway.

  • Li-Hui Wang‎ et al.
  • Scientific reports‎
  • 2016‎

SL4, a chalcone-based compound, has been shown to retard tumor invasion and angiogenesis by suppressing HIF1 activity and to induce apoptosis by promoting ROS release. Here, we report that SL4 is able to inhibit the proliferation of different types of breast cancer cell in vitro and in vivo by inducing G2/M cell cycle arrest. Our results showed that SL4 exhibited strong anti-proliferative activity in several human breast cancer cell lines, with IC50 values lower than 1.3 μM. Further studies indicated that SL4 induced G2/M arrest in these cell lines. Mechanistically, SL4 reduces the expression of cyclin A2 and cdc25C and decreases the activity of the cdc2/cyclin B1 complex. Notably, SL4 treatment resulted in an obvious increase in p21 mRNA and protein levels through activation of MAPK signaling pathways, but not the TGF-β pathway. SP600125 and PD98059, specific inhibitors of JNK kinase and ERK kinase, significantly blocked the SL4-induced G2/M phase arrest and upregulation of p21. Furthermore, SL4 suppressed the growth of established breast tumors in nude mice through upregulation of p21 and downregulation of cdc25C, and displayed a good safety profile. Taken together, these findings demonstrate the potential value of SL4 as a novel multi-target anti-tumor drug candidate.


An analytical toolkit for polyploid willow discrimination.

  • Wei Guo‎ et al.
  • Scientific reports‎
  • 2016‎

Polyploid breeding is an important means for creating elite willow cultivars, and therefore provokes an active demand for discriminating the ploidy levels of natural willow stands. In this study, we established an analytical toolkit for polyploid willow identification by combining molecular markers and flow cytometry (FCM). A total of 10 single-copy fully informative SSRs were chosen for marker-aided selection based on a segregation test with a full-sib willow pedigree and a mutability test with a collection of natural willow stands. Aided by these molecular markers, we performed polyploid selection in two tree species and two shrub species of the genus Salix. The ploidy levels of the investigated samples were further examined using a flow cytometer. It was previously shown that results from marker-aided selection were consistent with those from FCM measurements. Based on ploidy level assessment in different willow species, it was found that tree willows were dominantly tetraploid, whereas shrub willows were most frequently diploid. With this analytical toolkit, polyploids can be rapidly screened from a large number of natural stands; thereafter, the exact ploidy levels of the polyploid candidates can be efficiently confirmed by FCM. This analytical toolkit will greatly enhance polyploid breeding programs for willows.


Inhibition of Influenza A Virus Infection by Fucoidan Targeting Viral Neuraminidase and Cellular EGFR Pathway.

  • Wei Wang‎ et al.
  • Scientific reports‎
  • 2017‎

Development of novel anti-influenza A virus (IAV) drugs with high efficiency and low toxicity is critical for preparedness against influenza outbreaks. Herein, we investigated the anti-IAV activities and mechanisms of fucoidan in vitro and in vivo. The results showed that a fucoidan KW derived from brown algae Kjellmaniella crassifolia effectively blocked IAV infection in vitro with low toxicity. KW possessed broad anti-IAV spectrum and low tendency of induction of viral resistance, superior to the anti-IAV drug amantadine. KW was capable of inactivating virus particles before infection and blocked some stages after adsorption. KW could bind to viral neuraminidase (NA) and inhibit the activity of NA to block the release of IAV. KW also interfered with the activation of EGFR, PKCα, NF-κB, and Akt, and inhibited both IAV endocytosis and EGFR internalization in IAV-infected cells, suggesting that KW may also inhibit cellular EGFR pathway. Moreover, intranasal administration of KW markedly improved survival and decreased viral titers in IAV-infected mice. Therefore, fucoidan KW has the potential to be developed into a novel nasal drop or spray for prevention and treatment of influenza in the future.


Identification of miRNA, lncRNA and mRNA-associated ceRNA networks and potential biomarker for MELAS with mitochondrial DNA A3243G mutation.

  • Wei Wang‎ et al.
  • Scientific reports‎
  • 2017‎

Researchers in the field of mitochondrial biology are increasingly unveiling of the complex mechanisms between mitochondrial dysfunction and noncoding RNAs (ncRNAs). However, roles of ncRNAs underlying mitochondrial myopathy remain unexplored. The aim of this study was to elucidate the regulating networks of dysregulated ncRNAs in Mitochondrial myopathy, Encephalopathy, Lactic Acidosis, and Stroke-like episodes (MELAS) with mitochondrial DNA (mtDNA) A3243G mutation, which might make contributions to the unveiling of the complex mechanisms underlying mitochondrial myopathy and, possibly, new tools applicable to clinical practice. Through high-throughput technology followed by quantitative real-time polymerase chain reaction (qRT-PCR) and bioinformatics analyses, for the first time, we found that the dysregulated muscle miRNAs and lncRNAs between 20 MELAS patients with mtDNA A3243G mutation and 20 controls formed complex regulation networks and participated in immune system, signal transduction, translation, muscle contraction and other pathways in discovery and training phase. Then, selected ncRNAs were validated in muscle and serum in independent validation cohorts by qRT-PCR. Finally, ROC curve analysis indicated reduced serum miR-27b-3p had the better diagnosis value than lactate and might serve as a novel, noninvasive biomarker for MELAS. Follow-up investigation is warranted to better understand roles of ncRNAs in mitochondrial myopathy pathogenesis.


Focal Lesions in Fatty Liver: If Quantitative Analysis Facilitates the Differentiation of Atypical Benign from Malignant Lesions.

  • Quan-Yuan Shan‎ et al.
  • Scientific reports‎
  • 2016‎

To evaluate the diagnostic performance of quantitative analysis as an adjunctive diagnostic tool to contrast-enhanced ultrasound (US) for the differentiation of atypical benign focal liver lesions (FLLs) from malignancies in fatty liver. Twenty-seven benign FLLs and fifty-six malignant FLLs that appeared hyper-enhanced during the arterial phase with washout in the portal or late phase in fatty liver were analyzed. Chi-square tests and logistic regression were applied to identify the specific features. Three sets of criteria were assigned: 1) all FLLs subjected to routine contrast-enhanced US; 2) all FLLs subjected to quantification analysis and contrast-enhanced US; and 3) parts of FLLs that could not be diagnosed using contrast-enhanced US (n = 66, 75.9%) but instead were diagnosed using parametric features. The sensitivity, specificity, accuracy and area under the receiver operating characteristic curve (AUC) of the three sets of criteria were analyzed. The AUCs of the criterion set 2 were significantly higher than those of criterion set 1 (0.904 versus 0.792, P = 0.008). Criterion set 3 showed a relatively high sensitivity (90.2%) with a relatively high AUC (0.845). The quantification analysis offers improved diagnostic performance for the differential identification of atypical benign FLLs from malignancies in fatty liver.


Screening and Identifying a Novel ssDNA Aptamer against Alpha-fetoprotein Using CE-SELEX.

  • Lili Dong‎ et al.
  • Scientific reports‎
  • 2015‎

Alpha-fetoprotein (AFP) is a liver cancer associated protein and has long been utilized as a serum tumor biomarker of disease progression. AFP is usually detected in HCC patients by an antibody based system. Recently, however, aptamers generated from systematic evolution of ligands by exponential enrichment (SELEX) were reported to have an alternative potential in targeted imaging, diagnosis and therapy. In this study, AFP-bound ssDNA aptamers were screened and identified using capillary electrophoresis (CE) SELEX technology. After cloning, sequencing and motif analysis, we successfully confirmed an aptamer, named AP273, specifically targeting AFP. The aptamer could be used as a probe in AFP immunofluorescence imaging in HepG2, one AFP positive cancer cell line, but not in A549, an AFP negative cancer cell line. More interesting, the aptamer efficiently inhibited the migration and invasion of HCC cells after in vivo transfection. Motif analysis revealed that AP273 had several stable secondary motifs in its structure. Our results indicate that CE-SELEX technology is an efficient method to screen specific protein-bound ssDNA, and AP273 could be used as an agent in AFP-based staining, diagnosis and therapy, although more works are still needed.


Quantitative iTRAQ-based proteomic analysis of phosphoproteins and ABA-regulated phosphoproteins in maize leaves under osmotic stress.

  • Xiuli Hu‎ et al.
  • Scientific reports‎
  • 2015‎

Abscisic acid (ABA) regulates various developmental processes and stress responses in plants. Protein phosphorylation/dephosphorylation is a central post-translational modification (PTM) in ABA signaling. However, the phosphoproteins regulated by ABA under osmotic stress remain unknown in maize. In this study, maize mutant vp5 (deficient in ABA biosynthesis) and wild-type Vp5 were used to identify leaf phosphoproteins regulated by ABA under osmotic stress. Up to 4052 phosphopeptides, corresponding to 3017 phosphoproteins, were identified by Multiplex run iTRAQ-based quantitative proteomic and LC-MS/MS methods. The 4052 phosphopeptides contained 5723 non-redundant phosphosites; 512 phosphopeptides (379 in Vp5, 133 in vp5) displayed at least a 1.5-fold change of phosphorylation level under osmotic stress, of which 40 shared common in both genotypes and were differentially regulated by ABA. Comparing the signaling pathways involved in vp5 response to osmotic stress and those that in Vp5, indicated that ABA played a vital role in regulating these pathways related to mRNA synthesis, protein synthesis and photosynthesis. Our results provide a comprehensive dataset of phosphopeptides and phosphorylation sites regulated by ABA in maize adaptation to osmotic stress. This will be helpful to elucidate the ABA-mediate mechanism of maize endurance to drought by triggering phosphorylation or dephosphorylation cascades.


Myeloid-related protein 8 induces self-tolerance and cross-tolerance to bacterial infection via TLR4- and TLR2-mediated signal pathways.

  • Andrew P Coveney‎ et al.
  • Scientific reports‎
  • 2015‎

Myeloid-related protein 8 (Mrp8) is the active component of Mrp8/14 protein complex released by phagocytes at the site of infection and stimulates inflammatory responses. However, it is unclear whether Mrp8 could induce self-tolerance and cross-tolerance to bacterial infection. Here we report that Mrp8 triggered TNF-α and IL-6 release via a Toll-like receptor 4 (TLR4)-dependent manner. Pre-stimulation of murine macrophages and human monocytes with Mrp8 induced self-tolerance to Mrp8 re-stimulation and cross-tolerance to lipopolysaccharide (LPS), bacterial lipoprotein (BLP), gram-negative and gram-positive bacterial challenges, with substantially attenuated TNF-α and IL-6 release. Moreover, Mrp8 tolerisation significantly reduced serum TNF-α and IL-6, increased polymorphonuclear neutrophil (PMN) recruitment and accelerated bacterial clearance, thus protecting mice against LPS-induced lethality and cecal ligation and puncture (CLP)-induced polymicrobial sepsis. In addition to TLR4, TLR2 also contributed to Mrp8-induced inflammatory response and tolerance. Down-regulation of phosphorylated p38 by Mrp8 pre-stimulation was predominantly responsible for the intracellular mechanism of Mrp8-induced tolerance. Thus, our findings of Mrp8-induced self-tolerance and cross-tolerance may provide a potential strategy for attenuating an overwhelming proinflammatory cascade and enhancing antimicrobial responses during microbial sepsis.


The rise of angiosperm-dominated herbaceous floras: Insights from Ranunculaceae.

  • Wei Wang‎ et al.
  • Scientific reports‎
  • 2016‎

The rise of angiosperms has been regarded as a trigger for the Cretaceous revolution of terrestrial ecosystems. However, the timeframe of the rise angiosperm-dominated herbaceous floras (ADHFs) is lacking. Here, we used the buttercup family (Ranunculaceae) as a proxy to provide insights into the rise of ADHFs. An integration of phylogenetic, molecular dating, ancestral state inferring, and diversification analytical methods was used to infer the early evolutionary history of Ranunculaceae. We found that Ranunculaceae became differentiated in forests between about 108-90 Ma. Diversification rates markedly elevated during the Campanian, mainly resulted from the rapid divergence of the non-forest lineages, but did not change across the Cretaceous-Paleogene boundary. Our data for Ranunculaceae indicate that forest-dwelling ADHFs may have appeared almost simultaneously with angiosperm-dominated forests during the mid-Cretaceous, whereas non-forest ADHFs arose later, by the end of the Cretaceous terrestrial revolution. Furthermore, ADHFs were relatively unaffected by the Cretaceous-Paleogene mass extinction.


Prognostic value of decreased expression of RBM4 in human gastric cancer.

  • Hongmei Yong‎ et al.
  • Scientific reports‎
  • 2016‎

RNA-binding motif 4 (RBM4) is a multifunctional protein that participates in regulating alternative splicing and mRNA translation. Its reduced expression has been associated with poor overall survival in lung cancer, breast cancer and ovarian cancer. We assessed RBM4 protein expression levels with immunohistochemistry in tissue microarrays containing malignant gastric cancer tissues and benign tissues from 813 patients. We also examined the expression levels of RBM4 mRNA in twenty-five paired gastric cancer samples and adjacent noncancerous tissues. Both RBM4 protein and mRNA expression levels were significantly lower in gastric cancer tissues compared with the adjacent noncancerous tissues. There was a significant association between reduced RBM4 protein expression and differentiation (P < 0.001), lymph node metastasis (P = 0.026), TNM state (P = 0.014) and distant metastasis (P = 0.036). Patients with reduced RBM4 expression (P < 0.001, CI = 0.315-0.710) and TNM stage III and IV (P < 0.001, CI = 4.757-11.166) had a poor overall survival. These findings suggest that RBM4 is a new biomarker in gastric cancer, as the reduced expression of this protein is correlated with poor differentiation, lymph node status and distant metastasis. Further, lower RBM4 expression is an independent prognostic marker for gastric cancer.


Divergent Evolutionary Pattern of Sugar Transporter Genes is Associated with the Difference in Sugar Accumulation between Grasses and Eudicots.

  • Wei Wang‎ et al.
  • Scientific reports‎
  • 2016‎

Sugars play a variety of roles in plants, and their accumulation in seeds and/or surrounding pericarp tissues is distinctly different between grasses and eudicots. However, little is known about the evolutionary pattern of genes involved in sugar accumulation in these two major groups of flowering plants. Here, we compared evolutionary rates, gene duplication, and selective patterns of genes involved in sugar metabolism and transport between grasses and eudicots using six grass species and seven eudicot species as materials. Overall, sugar transporter genes exhibit divergent evolutionary patterns, whereas, sugar metabolism genes showing similar evolutionary pattern between monocots and eudicots. Sugar transporter genes have higher frequencies of recent duplication in eudicots than in grasses and their patterns of evolutionary rate are different. Evidence for divergent selection of these two groups of flowering plants is also observed in sugar transporter genes, wherein, these genes have undergone positive selection in eudicots, but not in grasses. Taken together, these findings suggest that sugar transporter genes rather than sugar metabolism genes play important roles in sugar accumulation in plants, and that divergent evolutionary patterns of sugar transporter genes are associated with the difference of sugar accumulation in storage tissues of grasses and eudicots.


Combined approaches of EPR and NMR illustrate only one transmembrane helix in the human IFITM3.

  • Shenglong Ling‎ et al.
  • Scientific reports‎
  • 2016‎

Interferon-inducible transmembrane protein IFITM3 was known to restrict the entry of a wide spectrum of viruses to the cytosol of the host. The mechanism used by the protein to restrict viral entry is unclear given the unavailability of the membrane topology and structures of the IFITM family proteins. Systematic site-directed spin labeling (SDSL) and electron paramagnetic resonance (EPR) studies of IFITM3 in detergent micelles identified a single, long transmembrane helix in the C-terminus and an intramembrane segment in the N-terminal hydrophobic region. Solution NMR studies of the same sample verified the secondary structure distribution and demonstrated two rigid regions interacting with the micellar surface. The resulting membrane topology of IFITM3 supports the mechanism of an enhanced restricted membrane hemi-fusion.


High frequency of +1 programmed ribosomal frameshifting in Euplotes octocarinatus.

  • Ruanlin Wang‎ et al.
  • Scientific reports‎
  • 2016‎

Programmed -1 ribosomal frameshifting (-1 PRF) has been identified as a mechanism to regulate the expression of many viral genes and some cellular genes. The slippery site of -1 PRF has been well characterized, whereas the +1 PRF signal and the mechanism involved in +1 PRF remain poorly understood. Previous study confirmed that +1 PRF is required for the synthesis of protein products in several genes of ciliates from the genus Euplotes. To accurately assess the frequency of genes requiring frameshift in Euplotes, the macronuclear genome and transcriptome of Euplotes octocarinatus were analyzed in this study. A total of 3,700 +1 PRF candidate genes were identified from 32,353 transcripts, and the gene products of these putative +1 PRFs were mainly identified as protein kinases. Furthermore, we reported a putative suppressor tRNA of UAA which may provide new insights into the mechanism of +1 PRF in euplotids. For the first time, our transcriptome-wide survey of +1 PRF in E. octocarinatus provided a dataset which serves as a valuable resource for the future understanding of the mechanism underlying +1 PRF.


BATMAN-TCM: a Bioinformatics Analysis Tool for Molecular mechANism of Traditional Chinese Medicine.

  • Zhongyang Liu‎ et al.
  • Scientific reports‎
  • 2016‎

Traditional Chinese Medicine (TCM), with a history of thousands of years of clinical practice, is gaining more and more attention and application worldwide. And TCM-based new drug development, especially for the treatment of complex diseases is promising. However, owing to the TCM's diverse ingredients and their complex interaction with human body, it is still quite difficult to uncover its molecular mechanism, which greatly hinders the TCM modernization and internationalization. Here we developed the first online Bioinformatics Analysis Tool for Molecular mechANism of TCM (BATMAN-TCM). Its main functions include 1) TCM ingredients' target prediction; 2) functional analyses of targets including biological pathway, Gene Ontology functional term and disease enrichment analyses; 3) the visualization of ingredient-target-pathway/disease association network and KEGG biological pathway with highlighted targets; 4) comparison analysis of multiple TCMs. Finally, we applied BATMAN-TCM to Qishen Yiqi dripping Pill (QSYQ) and combined with subsequent experimental validation to reveal the functions of renin-angiotensin system responsible for QSYQ's cardioprotective effects for the first time. BATMAN-TCM will contribute to the understanding of the "multi-component, multi-target and multi-pathway" combinational therapeutic mechanism of TCM, and provide valuable clues for subsequent experimental validation, accelerating the elucidation of TCM's molecular mechanism. BATMAN-TCM is available at http://bionet.ncpsb.org/batman-tcm.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: