Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 25 papers

The effect of probiotic and synbiotic supplementation on biomarkers of inflammation and oxidative stress in diabetic patients: A systematic review and meta-analysis of randomized controlled trials.

  • Hui Juan Zheng‎ et al.
  • Pharmacological research‎
  • 2019‎

The role of gut microbiota in the management of diabetes has been shown. Several current trials are investigating the effect of probiotics and prebiotics, which are widely used to modulate intestinal microbiota, on inflammatory factors and biomarkers of oxidative stress in diabetic patients; however, their findings are controversial. The aim of the current meta-analysis was to evaluate the effects of probiotic and synbiotic supplementation on levels of serum high-sensitivity C-reactive protein (hs-CRP) and biomarkers of oxidative stress in diabetic patients. We searched the PubMed, Web of Science, and The Cochrane Library databases from the inception to October 31, 2018. Randomized controlled trials (RCTs) which reported the effect of probiotics or synbiotics on circulating (serum and plasma) inflammatory marker (hs-CRP) and oxidative stress indicators (malondialdehyde [MDA], glutathione [GSH], nitric oxide [NO], and total antioxidant capacity [TAC]) among patients with diabetes were included. Eligible studies were assessed for risk of bias and subjected to qualitative and quantitative synthesis using either fixed- or random-effects models accounting for clinical heterogeneity. Our meta-analysis identified 16 eligible RCTs (n = 1060). The methodological quality varied across these trials. Pooled data from these trials demonstrated that probiotic and synbiotic consumption significantly decreased hs-CRP level (standardized mean difference [SMD]=-0.38; 95% confidence interval [CI]:-0.51,-0.24; P = 0.000) and MDA (SMD=-0.61; 95% CI: -0.89, -0.32; P = 0.000) in diabetic patients compared to those in subjects receiving placebos. In addition, probiotic and symbiotic supplementation was found to increase TAC (SMD = 0.31; 95% CI: 0.09, 0.52; P = 0.006), NO (SMD, 0.62; 95% CI, 0.25 to 0.99; P = 0.001) and GSH (SMD = 0.41; 95% CI: 0.26, 0.55, P = 0.000) levels. The results of this systematic review and meta-analysis suggest that probiotic and synbiotic supplementation may help to improve biomarkers of inflammation and oxidative stress in diabetic patients. Further studies are needed to develop clinical practice guidelines for the management of inflammation and oxidative stress in these patients.


Effects of traditional Chinese herbal medicine in patients with diabetic kidney disease: study protocol for a randomized controlled trial.

  • Mengdi Wang‎ et al.
  • Trials‎
  • 2018‎

Diabetic kidney disease (DKD) is a major microvascular complication of diabetes mellitus and the primary cause of end-stage renal disease. Existing therapies for DKD are not sufficiently effective. We report the protocol of a pragmatic randomized controlled trial of the use of traditional Chinese herbal medicine to treat patients with DKD.


Cordyceps cicadae Ameliorates Renal Hypertensive Injury and Fibrosis Through the Regulation of SIRT1-Mediated Autophagy.

  • Yuzi Cai‎ et al.
  • Frontiers in pharmacology‎
  • 2021‎

Hypertensive renal injury is a complication of hypertension. Cordyceps cicadae (C. cicadae) is a traditional Chinese medicine used to treat chronic kidney diseases especially renal fibrosis. Autophagy is described as a cell self-renewal process that requires lysosomal degradation and is utilized for the maintenance of cellular energy homeostasis. The present study explores the mechanism underlying C. cicadae's renoprotection on hypertensive nephropathy (HN). First, HN rat models were established on spontaneously hypertensive rats (SHRs). The expression of fibrosis-related protein and autophagy-associated protein was detected in vivo. NRK-52E cells exposed to AngII were chosen to observe the potential health benefits of C. cicadae on renal damage. The level of extracellular matrix accumulation was detected using capillary electrophoresis immunoquantification and immunohistochemistry. After treatment with lysosomal inhibitors (chloroquine) or an autophagy activator (rapamycin), the expression of Beclin-1, LC3II, and SQSTM1/p62 was further investigated. The study also investigated the change in sirtuin1 (SIRT1), fork head box O3a (FOXO3a), and peroxidation (superoxide dismutase (SOD) and malondialdehyde (MDA)) expression when intervened by resveratrol. The changes in SIRT1 and FOXO3a were measured in patients and the SHRs. Here, we observed that C. cicadae significantly decreased damage to renal tubular epithelial cells and TGFβ1, α-smooth muscle actin (α-SMA), collagen I (Col-1), and fibronectin expression. Meanwhile, autophagy defects were observed both in vivo and in vitro. C. cicadae intervention significantly downregulated Beclin-1 and LC3II and decreased SQSTM1/p62, showing an inhibition of autophagic vesicles and the alleviation of autophagy stress. These functions were suppressed by rapamycin, and the results were just as effective as the resveratrol treatment. HN patients and the SHRs exhibited decreased levels of SIRT1 and FOXO3a. We also observed a positive correlation between SIRT1/FOXO3a and antifibrotic effects. Similar to the resveratrol group, the expression of SIRT1/FOXO3a and oxidative stress were elevated by C. cicadae in vivo. Taken together, our findings show that C. cicadae ameliorates tubulointerstitial fibrosis and delays HN progression. Renoprotection was likely attributable to the regulation of autophagic stress mediated by the SIRT1 pathway and achieved by regulating FOXO3a and oxidative stress.


Effects of allopurinol on renal function in patients with diabetes: a systematic review and meta-analysis.

  • Qian Luo‎ et al.
  • Renal failure‎
  • 2022‎

Diabetes mellitus is a common "non-gout" disease with high incidence. Several studies have shown that serum uric acid level in patients with diabetes is higher than that in healthy individuals, and is accompanied by severe albuminuria and high serum creatinine (Scr). Recent clinical studies have found that uric acid-lowering therapy (such as allopurinol) could reduce urinary albumin excretion rates (UAER) and Scr, increase eGFR, and thus reduce kidney damage in patients with diabetes. Therefore, this meta-analysis [PROSPERO CRD42021274465] intended to evaluate the efficacy and safety of allopurinol in patients with diabetes mellitus.


Integrating network pharmacology and experimental validation to decipher the mechanism of the Chinese herbal prescription modified Shen-Yan-Fang-Shuai formula in treating diabetic nephropathy.

  • Borui Yu‎ et al.
  • Pharmaceutical biology‎
  • 2023‎

Diabetic nephropathy (DN) is the main cause of end-stage renal disease. Modified Shen-Yan-Fang-Shuai formula (M-SYFSF) has excellent clinical efficacy in treating diabetic kidney disease. However, the potential mechanism of M-SYFSF remains unknown.


Neuroprotective effect of the glucagon-like peptide-1 receptor agonist, synthetic exendin-4, in streptozotocin-induced diabetic rats.

  • Wei Jing Liu‎ et al.
  • British journal of pharmacology‎
  • 2011‎

Glucagon-like peptide-1 (GLP-1) receptors are widely expressed in neural tissues and diminish neuronal degeneration or induce neuronal differentiation. The aim of this study was to investigate the effect of the GLP-1 pathway on peripheral nerves in streptozotocin-induced diabetic rats.


Lysosome restoration to activate podocyte autophagy: a new therapeutic strategy for diabetic kidney disease.

  • Wei Jing Liu‎ et al.
  • Cell death & disease‎
  • 2019‎

Autophagy, the intracellular lysosomal degradation process plays a pivotal role in podocyte homeostasis in diabetic kidney disease (DKD). Lysosomal function, autophagic activity, and their actions were investigated in vitro and in vivo. We found that LC3-II- and p62-positive vacuoles accumulated in podocytes of patients with DKD. Moreover, we found that advanced glycation end products (AGEs) could increase the protein expression of LC3-II and p62 in a dose- and time-dependent manner in cultured podocytes. However, the mRNA expression of LC3B, Beclin-1 or ATG7, as well as the protein level of Beclin-1 or ATG7 did not change significantly in the AGE-treated cells compared with that in control groups, suggesting that AGEs did not induce autophagy. In addition, AGEs led to an increase in the number of autophagosomes but not autolysosomes, accompanied with a failure in lysosomal turnover of LC3-II or p62, indicating that the degradation of autophagic vacuoles was blocked. Furthermore, we observed a dramatic decrease in the enzymatic activities, and the degradation of DQ-ovalbumin was significantly suppressed after podocytes were treated with AGEs. Plasma-irregular lysosomal-associated membrane protein 1 granules accompanied with the diffusion of cathepsin D expression and acridine orange redistribution were observed in AGE-treated podocytes, indicating that the lysosomal membrane permeability was triggered. Interestingly, we also found that AGEs-induced autophagic inhibition and podocyte injury were mimicked by the specific lysosomotropic agent, L-leucyl-L-leucine methyl ester. The exacerbated apoptosis and Rac-1-dependent actin-cytoskeletal disorganization were alleviated by an improvement in the lysosomal-dependent autophagic pathway by resveratrol plus vitamin E treatment in AGE-treated podocytes. However, the rescued effects were reversed by the addition of leupeptin, a lysosomal inhibitor. It suggests that restoring lysosomal function to activate autophagy may contribute to the development of new therapeutic strategies for DKD.


Efficacy of Intermittent or Continuous Very Low-Energy Diets in Overweight and Obese Individuals with Type 2 Diabetes Mellitus: A Systematic Review and Meta-Analyses.

  • Yi Shan Huang‎ et al.
  • Journal of diabetes research‎
  • 2020‎

This study is aimed at investigating the efficacy of a very low-energy diet (VLED) in overweight and obese individuals with type 2 diabetes mellitus (T2DM).


Autophagy activation reduces renal tubular injury induced by urinary proteins.

  • Wei Jing Liu‎ et al.
  • Autophagy‎
  • 2014‎

Autophagy is shown to be beneficial for renal tubular injury caused by nephrotoxic drugs. To investigate whether autophagy could protect renal tubular epithelial cells (TECs) from injury induced by urinary proteins, we studied the activity and action of autophagy in TECs after urinary protein overload in vivo and in vitro. We found that autophagic vacuoles increased in TECs from patients with minimal change nephrotic syndrome (MCNS) and rat models with severe proteinuria induced by cationic BSA. In HK-2 cells, exposure to urinary proteins extracted from patients with MCNS led to a significant increase in autophagosome and autolysosome formation and decrease in SQSTM1/p62 protein level. Urinary protein addition also induced lysosomal turnover of LC3-II and perinuclear clustering of lysosomes. These changes were mediated by a reactive oxygen species (ROS)-dependent mechanism. Furthermore, pretreatment of HK-2 cells with rapamycin reduced the production of LCN2/NGAL and HAVCR1/KIM-1 and the level of apoptosis induced by urinary proteins. In contrast, blocking autophagy with chloroquine or BECN1 siRNAs exerted an opposite effect. Similar results were also observed in animal models with proteinuria after treatments with rapamycin and chloroquine. Taken together, our results indicated an increase in autophagic flux, which mounts an adaptive response in TECs after urinary protein overload.


Renoprotective Effect of the Shen-Yan-Fang-Shuai Formula by Inhibiting TNF-α/NF-κB Signaling Pathway in Diabetic Rats.

  • Jie Lv‎ et al.
  • Journal of diabetes research‎
  • 2017‎

Diabetic kidney disease (DKD) is the leading cause of end-stage kidney disease, and satisfactory therapeutic strategies have not yet been established. The Shen-Yan-Fang-Shuai Formula (SYFSF) is a traditional Chinese formula composed of Astragali radix, Radixangelicae sinensis, Rheum officinale Baill, and four other herbs. It has been widely used as an effective treatment for DKD patients in China. However, little is known about the molecular mechanisms underlying SYFSF's renoprotection. In this study, we compared the protective effect of SYFSF to irbesartan on the histology and renal cells in type 2 DKD rat model and high-glucose (HG) cultured mesangial cells, respectively. We found that SYFSF could significantly decrease urinary albumin, cholesterol, and triglyceride. And a decrease in serum creatinine was also found in SYFSF-treated group compared with irbesartan-treated rats. In addition, SYFSF inhibited the interstitial expansion and glomerulosclerosis in diabetic rats. Notably, SYFSF markedly downregulated the expression of MCP-1, TGF-β1, collagen IV, and fibronectin in diabetic rat models and HG-induced mesangial cell models. The renoprotection was closely associated with a reduced expression of TNF-α and phosphorylated NF-κBp65. Our study suggests that SYFSF may ameliorate diabetic kidney injury. The observed renoprotection is probably attributable to an inhibition of inflammatory response and extracellular matrix (ECM) accumulation mediated by TNF-α/NF-κBp65 signaling pathway.


Effect of Baoshenfang Formula on Podocyte Injury via Inhibiting the NOX-4/ROS/p38 Pathway in Diabetic Nephropathy.

  • Fang-Qiang Cui‎ et al.
  • Journal of diabetes research‎
  • 2019‎

Diabetic nephropathy (DN) is a serious kidney-related complication of type 1 and type 2 diabetes. The Chinese herbal formula Baoshenfang (BSF) shows therapeutic potential in attenuating oxidative stress and apoptosis in podocytes in DN. This study evaluated the effects of BSF on podocyte injury in vivo and in vitro and explored the possible involvement of the nicotinamide adenine dinucleotide phosphate-oxidase-4/reactive oxygen species- (NOX-4/ROS-) activated p38 pathway. In the identified compounds by mass spectrometry, some active constituents of BSF were reported to show antioxidative activity. In addition, we found that BSF significantly decreased 24-hour urinary protein, serum creatinine, and blood urea nitrogen in DN patients. BSF treatment increased the nephrin expression, alleviated oxidative cellular damage, and inhibited Bcl-2 family-associated podocyte apoptosis in high-glucose cultured podocytes and/or in diabetic rats. More importantly, BSF also decreased phospho-p38, while high glucose-mediated apoptosis was blocked by p38 mitogen-activated protein kinase inhibitor in cultured podocytes, indicating that the antiapoptotic effect of BSF is p38 pathway-dependent. High glucose-induced upexpression of NOX-4 was normalized by BSF, and NOX-4 siRNAs inhibited the phosphorylation of p38, suggesting that the activated p38 pathway is at least partially mediated by NOX-4. In conclusion, BSF can decrease proteinuria and protect podocytes from injury in DN, in part through inhibiting the NOX-4/ROS/p38 pathway.


Yiqihuoxue Formula Activates Autophagy and Offers Renoprotection in a Rat Model of Adenine-Induced Kidney Disease.

  • Chen Hui Xia‎ et al.
  • Evidence-based complementary and alternative medicine : eCAM‎
  • 2019‎

Chronic kidney disease (CKD) is a worldwide health problem for which effective therapeutic methods are still lacking. Traditional Chinese medicine (TCM) has been indicated as an effective alternative treatment for kidney disease. In this study, a clinically effective therapy, yiqihuoxue (YQHX) formula, was administrated to adenine-induced kidney disease rats for 6 weeks. We found that the adenine rats displayed a significant reduction in renal function as evidenced by the increased levels of serum creatinine (Scr), blood urea nitrogen (BUN), and 24-h urinary albumin level, which were attenuated by the YQHX treatment. The glomerulosclerosis, interstitial fibrosis, arteriolosclerosis, interstitial inflammation, and tubular dilatation were reversed by the YQHX treatment in the adenine rats. Furthermore, the hepatic damage characterized by increased levels of aspartate aminotransferase and alanine aminotransferase and inflammatory cell infiltration was improved by YQHX. In addition, the number of apoptotic cells in the adenine rats was obviously reduced by the YQHX treatment as manifested by the lower expression level of cleaved caspase-3 protein. Moreover, the YQHX treatment downregulated the expression levels of fibronectin, type I collagen, α-smooth muscle actin, and TGF-β1 in the adenine rats. Furthermore, autophagy was activated by the YQHX treatment, which manifested as an increased LC3-II and Beclin-1 expression levels and a decreased p62 level. In conclusion, the YQHX formula might retard the progression of kidney disease by activating autophagy.


Modulation of the Gut Microbiota by Shen-Yan-Fang-Shuai Formula Improves Obesity Induced by High-Fat Diets.

  • Zhen Wang‎ et al.
  • Frontiers in microbiology‎
  • 2020‎

Obesity and related metabolic disorders are associated with intestinal microbiota dysbiosis, disrupted intestinal barrier and chronic inflammation. Shen-Yan-Fang-Shuai formula (SYFSF) is a traditional Chinese herbal formula composed of Astragali Radix, Radix Angelicae Sinensis, Rheum Officinale Baill, and four other herbs. In this study, we identified that SYFSF treatment prevented weight gain, low-grade inflammation and insulin resistance in high-fat diet (HFD)-fed mice. SYFSF also substantially improved gut barrier function, reduced metabolic endotoxemia, as well as systemic inflammation. Sequencing of 16S rRNA genes obtained from fecal samples demonstrated that SYFSF attenuated HFD-induced gut dysbiosis, seen an decreased Firmicutes to Bacteroidetes ratios. Microbial richness and diversity were also higher in the SYFSF-treated HFD group. Furthermore, similar therapeutic effects and changes in gut microbiota profile caused by SYFSF could be replicated by fecal microbiota transfer (FMT). Taken together, our study highlights the efficacy of SYFSF in preventing obesity and related metabolic disorders. Its therapeutic effect is associated with the modulation of gut microbiota, as a prebiotic.


ROS-ERK Pathway as Dual Mediators of Cellular Injury and Autophagy-Associated Adaptive Response in Urinary Protein-Irritated Renal Tubular Epithelial Cells.

  • Jian-Kun Deng‎ et al.
  • Journal of diabetes research‎
  • 2021‎

ERK, an extracellular signal-regulated protein kinase, is involved in various biological responses, such as cell proliferation and differentiation, cell morphology maintenance, cytoskeletal construction, apoptosis, and canceration of cells. In this study, we focused on ERK pathway on cellular injury and autophagy-associated adaptive response in urinary protein-irritated renal tubular epithelial cells and explored the potential mechanisms underlying it. By using antioxidants N-acetylcysteine and catalase, we found that ERK pathway was activated by a reactive oxygen species- (ROS-) dependent mechanism after exposure to urinary proteins. What is more, ERK inhibitor U0126 could decrease the release of neutrophil gelatinase-associated lipocalin (NGAL), kidney injury molecule-1 (KIM-1), and the number of apoptotic cells induced by urinary proteins, indicating the damaging effects of ERK pathway in mediating cellular injury and apoptosis in HK-2 cells. Interestingly, we also found that the increased expression of microtubule-associated protein 1 light chain 3 (LC3)-II (a key marker of autophagy) and the decreased expression of p62 (autophagic substrate) induced by urinary proteins were reversed by U0126, suggesting autophagy was activated by ERK pathway. Furthermore, rapamycin reduced urinary protein-induced NGAL and KIM-1 secretion and cell growth inhibition, while chloroquine played the opposite effect, indicating that autophagy activation by ERK pathway was an adaptive response in the exposure to urinary proteins. Taken together, our results indicate that activated ROS-ERK pathway can induce cellular injury and in the meantime provide an autophagy-associated adaptive response in urinary protein-irritated renal tubular epithelial cells.


Qing-Re-Xiao-Zheng Formula Modulates Gut Microbiota and Inhibits Inflammation in Mice With Diabetic Kidney Disease.

  • Yabin Gao‎ et al.
  • Frontiers in medicine‎
  • 2021‎

Evidence indicates that the metabolic inflammation induced by gut microbiota dysbiosis contributes to diabetic kidney disease. Prebiotic supplementations to prevent gut microbiota dysbiosis, inhibit inflammatory responses, and protect the renal function in DKD. Qing-Re-Xiao-Zheng formula (QRXZF) is a Traditional Chinese Medicine (TCM) formula that has been used for DKD treatment in China. Recently, there are growing studies show that regulation of gut microbiota is a potential therapeutic strategy for DKD as it is able to reduce metabolic inflammation associated with DKD. However, it is unknown whether QRXZF is effective for DKD by regulating of gut microbiota. In this study, we investigated the reno-protective effect of QRXZF by exploring its potential mechanism between gut microbiota and downstream inflammatory pathways mediated by gut-derived lipopolysaccharide (LPS) in the kidney. High-fat diet (HFD) and streptozotocin injection-induced DKD mice model was established to assess the QRXZF effect in vivo. Mice treated with QRXZF for 8 weeks had significantly lower levels of urinary albumin, serum cholesterol and triglycerides. The renal injuries observed through histological analysis were attenuated as well. Also, mice in the QRXZF group had higher levels of Zonula occludens protein-1 (ZO-1) expression, lower levels of serum fluorescein-isothiocyanate (FITC)-dextran and less-damaged colonic mucosa as compared to the DKD group, implying the benefit role for the gut barrier integrity. QRXZF treatment also reversed gut dysbiosis and reduced levels of gut-derived LPS. Notably, the expression of toll-like receptor 4 (TLR4) and nuclear factor-κB (NF-κB), which are important inflammation pathways in DKD, were suppressed in the QRXZF groups. In conclusion, our results indicated that the reno-protective effects of QRXZF was probably associated with modulating gut microbiota and inhibiting inflammatory responses in the kidney.


Sulodexide Protects Renal Tubular Epithelial Cells from Oxidative Stress-Induced Injury via Upregulating Klotho Expression at an Early Stage of Diabetic Kidney Disease.

  • Yu Ning Liu‎ et al.
  • Journal of diabetes research‎
  • 2017‎

The hypoalbuminuric effect of sulodexide (SDX) on diabetic kidney disease (DKD) was suggested by some clinical trials but was denied by the Collaborative Study Group. In this study, the diabetic rats were treated with SDX either from week 0 to 24 or from week 13 to 24. We found that 24-week treatment significantly decreased the urinary protein and HAVCR1 excretion, inhibited the interstitial expansion, and downregulated the renal cell apoptosis and interstitial fibrosis. Renoprotection was also associated with a reduction in renocortical/urinary oxidative activity and the normalization of renal klotho expression. However, all of these actions were not observed when SDX was administered only at the late stage of diabetic nephropathy (from week 13 to 24). In vitro, advanced glycation end products (AGEs) dose-dependently enhanced the oxidative activity but lowered the klotho expression in cultured proximal tubule epithelial cells (PTECs). Also, H2O2 could downregulate the expression of klotho in a dose-dependent manner. However, overexpression of klotho reduced the HAVCR1 production and the cellular apoptosis level induced by AGEs or H2O2. Our study suggests that SDX may prevent the progression of DKD at the early stage by upregulating renal klotho expression, which inhibits the tubulointerstitial injury induced by oxidative stress.


Blockage of the lysosome-dependent autophagic pathway contributes to complement membrane attack complex-induced podocyte injury in idiopathic membranous nephropathy.

  • Wei Jing Liu‎ et al.
  • Scientific reports‎
  • 2017‎

Dysregulation of autophagy-mediated podocyte homeostasis is proposed to play a role in idiopathic membranous nephropathy (IMN). In the present study, autophagic activity and lysosomal alterations were investigated in podocytes of IMN patients and in cultured podocytes exposed to sublytic terminal complement complex, C5b-9. C5b-9 upregulated the number of LC3 positive puncta and the expression of p62 in patient podocytes and in C5b-9 injuried podocyte model. The lysosomal turnover of LC3-II was not influenced, although the BECN1 expression level was upregulated after exposure of podocytes to C5b-9. C5b-9 also caused a significant increase in the number of autophagosomes but not autolysosomes, suggesting that C5b-9 impairs the lysosomal degration of autophagosomes. Moreover, C5b-9 exacerbated the apoptosis of podocytes, which could be mimicked by chloroquine treatment, indicating that C5b-9 triggered podocyte injury, at least partially through inhibiting autophagy. Subsequent studies revealed that C5b-9 triggered lysosomal membrane permeabilization, which likely caused the decrease in enzymatic activity, defective acidification of lysosomes, and suppression of DQ-ovalbumin degradation. Taken together, our results suggest that the lysosomal-dependent autophagic pathway is blocked by C5b-9, which may play a key role in podocyte injury during the development of IMN.


Adaptive Autophagy Offers Cardiorenal Protection in Rats with Acute Myocardial Infarction.

  • Zhendong Feng‎ et al.
  • Cardiology research and practice‎
  • 2020‎

Understanding the multifactorial changes involved in the kidney and heart after acute myocardial infarction (AMI) is prerequisite for further mechanisms and early intervention, especially autophagy changes. Here, we discussed the role of adaptive autophagy in the heart and kidney of rats with AMI.


Efficacy and Safety of Daprodustat for Anemia Therapy in Chronic Kidney Disease Patients: A Systematic Review and Meta-Analysis.

  • Qiyan Zheng‎ et al.
  • Frontiers in pharmacology‎
  • 2020‎

Objective: Daprodustat is a novel oral agent in treating anemia of chronic kidney disease (CKD), and several clinical trials have been conducted to compare daprodustat with recombinant human erythropoietin (rhEPO) or placebo. Our systematic review aimed to investigate the efficacy and safety of daprodustat for anemia treatment in both dialysis-dependent (DD) and non-dialysis-dependent (NDD) patients. Methods: Six databases were searched for randomized controlled trials (RCTs) reporting daprodustat vs. rhEPO or placebo for anemia patients in CKD. The outcome indicators were focused on hemoglobin (Hb), ferritin, transferrin saturation (TSAT), total iron-binding capacity (TIBC), vascular endothelial growth factor (VEGF), and serious adverse events (SAEs). Results: Eight eligible studies with 1,516 participants were included. For both NDD and DD patients, changes in Hb levels from baseline were significantly higher in daprodustat group than that in the placebo (mean difference (MD) = 1.73, [95% confidence interval (CI), 0.34 to 3.12], p = 0.01; MD = 1.88, [95% CI, 0.68 to 3.09], p = 0.002; respectively), and there was no significant difference between daprodustat and rhEPO group (MD = 0.05, [95% CI, -0.49 to 0.59], p = 0.86; MD = 0.12, [95% CI, -0.28 to 0.52], p = 0.55; respectively). The indexes of iron metabolism were improved significantly in the daprodustat group compared to placebo- or rhEPO-treated patients, while there was no similar change in terms of TSAT for DD patients. Furthermore, no trend of increasing plasma VEGF was observed in daprodustat-treated subjects. As for safety, there was no significant difference in the incidence of SAEs between daprodustat and placebo treatment, while the incidence of SAEs in the daprodustat group was significantly lower than that in the rhEPO group. Conclusion: Daprodustat was efficacious and well tolerated for anemia in both NDD and DD patients in the short term based on current RCTs. And daprodustat may become an effective alternative for treatment of anemia with CKD. Since the application of daprodustat is still under exploration, future researches should consider the limitations of our study to evaluate the value of daprodustat.


Generation of a COL4A5 heterozygous mutation human embryonic stem cell line (WAe009-A-58) using an episomal vector-based CRISPR/Cas9 system.

  • Lei Tian‎ et al.
  • Stem cell research‎
  • 2021‎

X-linked Alport syndrome (XLAS) is the second most common inherited kidney disease which pathogenic variants related to a mutation in the COL4A5 gene encoding the type IV collagen α5 chain. Here, we have generated a COL4A5 heterozygous mutant human embryonic stem cell (hESC) line (H9-COL4A5+/-) by an episomal vector-based CRISPR/Cas9 system. The generated H9-COL4A5+/- maintained a normal stem cell morphology, stably expressed pluripotent markers, and could differentiate into all three germ layers in vivo. This cell line offers an in vitro efficient platform to explore pathogenic mechanisms in XLAS and provides a cell-based disease model for drug testing.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: