Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 14 papers out of 14 papers

Luteolin alleviates post-infarction cardiac dysfunction by up-regulating autophagy through Mst1 inhibition.

  • Jianqiang Hu‎ et al.
  • Journal of cellular and molecular medicine‎
  • 2016‎

Myocardial infarction (MI), which is characterized by chamber dilation and LV dysfunction, is associated with substantially higher mortality. We investigated the effects and underlying mechanisms of Luteolin on post-infarction cardiac dysfunction. Myocardial infarction was constructed by left anterior descending coronary artery ligation. In vitro, cultured neonatal cardiomyocytes subjected to simulated MI were used to probe mechanism. Luteolin significantly improved cardiac function, decreased cardiac enzyme and inflammatory cytokines release after MI. Enhanced autophagic flux as indicated by more autophagosomes puncta, less accumulation of aggresomes and P62 in the neonatal cardiomyocytes after hypoxia was observed in the Luteolin pre-treatment group. Western blot analysis also demonstrated that Luteolin up-regulated autophagy in the cardiomyocytes subjected to simulated MI injury. Furthermore, Luteolin increased mitochondrial membrane potential, adenosine triphosphate content, citrate synthase activity and complexes I/II/III/IV/V activities in the cardiomyocytes subjected to simulated MI injury. Interestingly, mammalian sterile 20-like kinase 1 (Mst1) knockout abolished the protective effects of Luteolin administration. Luteolin enhances cardiac function, reduces cardiac enzyme and inflammatory markers release after MI. The protective effects of Luteolin are associated with up-regulation of autophagy and improvement of mitochondrial biogenesis through Mst1 inhibition.


Sustained nicorandil administration reduces the infarct size in ST-segment elevation myocardial infarction patients with primary percutaneous coronary intervention.

  • Shanjie Wang‎ et al.
  • Anatolian journal of cardiology‎
  • 2019‎

Currently, there is still no effective strategy to diminish the infarct size (IS) in patients with ST-segment elevation myocardial infarction (STEMI). According to a previous animal study, nicorandil treatment is a promising pharmaceutical treatment to limit the infarct area. In this study, we aim to investigate the effects of continual nicorandil administration on the IS and the clinical outcomes in patients with STEMI who underwent primary percutaneous coronary intervention (pPCI).


SHANK3 Co-ordinately Regulates Autophagy and Apoptosis in Myocardial Infarction.

  • Wanrong Man‎ et al.
  • Frontiers in physiology‎
  • 2020‎

Cardiac remodeling and dysfunction are responsible for the high mortality after myocardial infarction (MI). We assessed the potential for Shank3 to alleviate the post-infarction cardiac dysfunction. The experimental MI mice model was constructed by left anterior descending coronary artery ligation. Shank3 knockout aggravated cardiac dysfunction after MI, while Shank3 overexpression alleviated it. The histological examination showed that the infarct size was significantly increased in the acute phase of MI in the Shank3 knockout group, and the cardiac dysfunction of the Shank3 knockout group was even more severe than the Shank3 overexpression group, revealed by echocardiography analyses. In vitro, cultured neonatal cardiomyocytes were subjected to simulated MI. Shank3 downregulation curbed LC3 expression and autophagosome-lysosome fusion. Furthermore, Shank3 downregulation increased cardiomyocyte apoptosis. In contrast, Shank3 upregulation induced autophagy, and inhibited apoptosis under hypoxia. In vivo, western blot analysis showed decreased levels of Atg7, Beclin1, LC3-II, and Bcl-2 as well as increased expression of p62, cleaved caspase-3, and cleaved caspase-9 in the Shank3 knockout group which suffered from MI. On the other hand, it also revealed that Shank3 overexpression induced autophagy and inhibited apoptosis after MI. Shank3 may serve as a new target for improving cardiac function after MI by inducing autophagy while inhibiting apoptosis.


Fibroblast-specific activation of Rnd3 protects against cardiac remodeling in diabetic cardiomyopathy via suppression of Notch and TGF-β signaling.

  • Yan Zhang‎ et al.
  • Theranostics‎
  • 2022‎

Rationale: Extracellular matrix (ECM) remodeling, a key pathological feature in diabetic cardiomyopathy (DCM), is triggered by oxidative stress, inflammation, and various metabolic disorders in the heart. Cardiac fibroblasts (CFs) are the primary source of ECM proteins and the ultimate effector cells in ECM remodeling. CFs are turned on and differentiated into myofibroblasts in response to profibrotic signaling. Rnd3 is a small Rho-GTPase involved in the regulation of cell-cycle distribution, cell migration, and cell morphogenesis. Emerging evidence suggests a link between Rnd3 expression and onset of cardiovascular diseases. However, the role of Rnd3 in DCM remains unknown. Methods: Flow cytometry was employed to separate different types of cardiac cells. Type 2 diabetes mellitus was established in Rnd3 fibroblast-specific knockout and transgenic mice. RNA sequencing and chromatin immunoprecipitation assay were used to discern signaling pathways involved. Results: Rnd3 expression was reduced in cardiac tissues of diabetic mice, with CFs being the primary cell type. Fibroblast-specific upregulation of Rnd3 in vivo was protective against DCM, whereas Rnd3 downregulation in fibroblasts accentuated cardiac oxidative stress, fibrosis, ventricular remodeling, and dysfunction. Moreover, in vitro Rnd3 overexpression significantly attenuated reactive oxygen species production, CF migration and proliferation under high levels of glucose (35 mmol/L) and palmitic acid (500 µmol/L) challenge. Furthermore, RNA sequencing indicated that Notch and TGF-β signaling were significantly suppressed upon Rnd3 overexpression. Mechanistically, Rnd3 regulated Notch and TGF-β signaling by interacting with NICD and ROCK1, respectively. Specifically, glucotoxicity and lipotoxicity control Rnd3 expression by regulating the binding of Nr1H2 and Rnd3 promoter. Conclusions: Our findings provide compelling evidence in that fibroblast-specific activation of Rnd3 protects against cardiac remodeling in DCM, indicating promises of targeting Rnd3 in the treatment of DCM.


Diagnostic performance of instantaneous wave-free ratio for the evaluation of coronary stenosis severity confirmed by fractional flow reserve: A PRISMA-compliant meta-analysis of randomized studies.

  • Wanrong Man‎ et al.
  • Medicine‎
  • 2016‎

The instantaneous wave-free ratio (iFR) is a new vasodilator-free index of coronary stenosis severity. The aim of this meta-analysis is to assess the diagnostic performance of iFR for the evaluation of coronary stenosis severity with fractional flow reserve as standard reference.


Mst1 inhibits CMECs autophagy and participates in the development of diabetic coronary microvascular dysfunction.

  • Jie Lin‎ et al.
  • Scientific reports‎
  • 2016‎

Cardiovascular complications account for a substantial proportion of morbidity and mortality in diabetic patients. Abnormalities of cardiac microvascular endothelial cells (CMECs) lead to impaired cardiac microvascular vessel integrity and subsequent cardiac dysfunction, underlining the importance of coronary microvascular dysfunction. In this study, experimental diabetes models were constructed using Mst1 transgenic, Mst1 knockout and sirt1 knockout mice. Diabetic Mst1 transgenic mice exhibited impaired cardiac microvessel integrity and decreased cardiac function. Mst1 overexpression deceased CMECs autophagy as evidenced by decreased LC3 expression and enhanced protein aggregation when subjected to high glucose culture. Mst1 knockout improved cardiac microvessel integrity and enhanced cardiac functions in diabetic mice. Mst1 knockdown up-regulated autophagy as indicated by more typical autophagosomes and increased LC3 expression in CMECs subjected to high glucose cultures. Mst1 knockdown also promoted autophagic flux in the presence of bafilomycin A1. Mst1 overexpression increased CMECs apoptosis, whereas Mst1 knockout decreased CMECs apoptosis. Sirt1 knockout abolished the effects of Mst1 overexpression in cardiac microvascular injury and cardiac dysfunction. In conclusion, Mst1 knockout preserved cardiac microvessel integrity and improved cardiac functions in diabetic mice. Mst1 decreased sirt1 activity, inhibited autophagy and enhanced apoptosis in CMECs, thus participating in the pathogenesis of diabetic coronary microvascular dysfunction.


Mst1 Knockout Alleviates Mitochondrial Fission and Mitigates Left Ventricular Remodeling in the Development of Diabetic Cardiomyopathy.

  • Xinyu Feng‎ et al.
  • Frontiers in cell and developmental biology‎
  • 2020‎

The disruption of mitochondrial dynamics is responsible for the development of diabetic cardiomyopathy (DCM). However, the mechanisms that regulate the balance of mitochondrial fission and fusion are not well-understood. Wild-type, Mst1 transgenic and Mst1 knockout mice were induced with experimental diabetes by streptozotocin injection. In addition, primary neonatal cardiomyocytes were isolated and cultured to simulate diabetes to explore the mechanisms. Echocardiograms and hemodynamic measurements revealed that Mst1 knockout alleviated left ventricular remodeling and cardiac dysfunction in diabetic mice. Mst1 knockdown significantly decreased the number of TUNEL-positive cardiomyocytes subjected to high-glucose (HG) medium culture. Immunofluorescence study indicated that Mst1 overexpression enhanced, while Mst1 knockdown mitigated mitochondrial fission in DCM. Mst1 participated in the regulation of mitochondrial fission by upregulating the expression of Drp1, activating Drp1S616 phosphorylation and Drp1S637 dephosphorylation, as well as promoting Drp1 recruitment to the mitochondria. Furthermore, Drp1 knockdown abolished the effects of Mst1 on mitochondrial fission, mitochondrial membrane potential and mitochondrial dysfunction in cardiomyocytes subjected to HG treatment. These results indicated that Mst1 knockout inhibits mitochondrial fission and alleviates left ventricular remodeling thus prevents the development of DCM.


Exercise alleviates cardiac remodelling in diabetic cardiomyopathy via the miR-486a-5p-Mst1 pathway.

  • Dong Sun‎ et al.
  • Iranian journal of basic medical sciences‎
  • 2021‎

Physical exercise has emerged as an effective therapy to mitigate cardiac remodelling in diabetic cardiomyopathy (DCM). The results of our previous studies revealed mammalian sterile 20-like kinase 1 (Mst1) is a key regulator of the progression of DCM. However, the precise molecular mechanism of physical exercise-induced cardiac protection and its association with Mst1 inhibition remain unclear.


Sirt6-Mediated Endothelial-to-Mesenchymal Transition Contributes Toward Diabetic Cardiomyopathy via the Notch1 Signaling Pathway.

  • Yan Zhang‎ et al.
  • Diabetes, metabolic syndrome and obesity : targets and therapy‎
  • 2020‎

Endothelial-to-mesenchymal transition (EndMT) is an important source of myofibroblasts that directly affects cardiac function in diabetic cardiomyopathy (DCM) via an unknown underlying mechanism. Sirt6 is a member of the Sirtuin family of NAD(+)-dependent enzymes that plays an important role in glucose and fatty acid metabolism. In this study, we investigated whether Sirt6 participates in EndMT during the development of T2DM and the possible underlying regulatory mechanisms.


OSM mitigates post-infarction cardiac remodeling and dysfunction by up-regulating autophagy through Mst1 suppression.

  • Jianqiang Hu‎ et al.
  • Biochimica et biophysica acta. Molecular basis of disease‎
  • 2017‎

The incidence and prevalence of heart failure (HF) in the world are rapidly rising possibly attributed to the worsened HF following myocardial infarction (MI) in recent years. Here we examined the effects of oncostatin M (OSM) on postinfarction cardiac remodeling and the underlying mechanisms involved. MI model was induced using left anterior descending coronary artery (LAD) ligation. In addition, cultured neonatal mouse cardiomyocytes were subjected to simulated MI. Our results revealed that OSM alleviated left ventricular remodeling, promoted cardiac function, restored mitochondrial cristae density and architecture disorders after 4weeks of MI. Enhanced autophagic flux was indicated in cardiomyocytes transduced with Ad-GFP -LC3 in the OSM treated group as compared with the MI group. OSM receptor Oβ knockout blocked the beneficial effects of OSM in postinfarction cardiac remodeling and cardiomyocytes autophagy. OSM pretreatment significantly alleviated left ventricular remodeling and dysfunction in Mst1 transgenic mice, while it failed to reverse further the postinfarction left ventricular dilatation and cardiac function in the Mst1 knockout mice. Our data revealed that OSM alleviated postinfarction cardiac remodeling and dysfunction by enhancing cardiomyocyte autophagy. OSM holds promise as a therapeutic target in treating HF after MI through Oβ receptor by inhibiting Mst1 phosphorylation.


Exosomes derived from pericardial adipose tissues attenuate cardiac remodeling following myocardial infarction by Adipsin-regulated iron homeostasis.

  • Wanrong Man‎ et al.
  • Frontiers in cardiovascular medicine‎
  • 2022‎

As a vital adipokine, Adipsin is closely associated with cardiovascular risks. Nevertheless, its role in the onset and development of cardiovascular diseases remains elusive. This study was designed to examine the effect of Adipsin on survival, cardiac dysfunction and adverse remodeling in the face of myocardial infarction (MI) injury. In vitro experiments were conducted to evaluate the effects of Adipsin on cardiomyocyte function in the face of hypoxic challenge and the mechanisms involved. Our results showed that Adipsin dramatically altered expression of proteins associated with iron metabolism and ferroptosis. In vivo results demonstrated that Adipsin upregulated levels of Ferritin Heavy Chain (FTH) while downregulating that of Transferrin Receptor (TFRC) in peri-infarct regions 1 month following MI. Adipsin also relieved post-MI-associated lipid oxidative stress as evidenced by decreased expression of COX2 and increased GPX4 level. Co-immunoprecipitation and immunofluorescence imaging prove a direct interaction between Adipsin and IRP2. As expected, cardioprotection provided by Adipsin depends on the key molecule of IRP2. These findings revealed that Adipsin could be efficiently delivered to the heart by exosomes derived from pericardial adipose tissues. In addition, Adipsin interacted with IRP2 to protect cardiomyocytes against ferroptosis and maintain iron homeostasis. Therefore, Adipsin-overexpressed exosomes derived from pericardial adipose tissues may be a promising therapeutic strategy to prevent adverse cardiac remodeling following ischemic heart injury.


Adipsin alleviates cardiac microvascular injury in diabetic cardiomyopathy through Csk-dependent signaling mechanism.

  • Xuebin Zhang‎ et al.
  • BMC medicine‎
  • 2023‎

Microvascular complications are associated with an overtly increased risk of adverse outcomes in patients with diabetes including coronary microvascular injury which manifested as disruption of adherens junctions between cardiac microvascular endothelial cells (CMECs). However, particular mechanism leading to diabetic coronary microvascular hyperpermeability remains elusive.


Mst1 knockdown alleviates cardiac lipotoxicity and inhibits the development of diabetic cardiomyopathy in db/db mice.

  • Zhenyu Xiong‎ et al.
  • Biochimica et biophysica acta. Molecular basis of disease‎
  • 2020‎

Diabetic cardiomyopathy (DCM) accounts for increasing deaths of diabetic patients, and effective therapeutic targets are urgently needed. Myocardial lipotoxicity, which is caused by cardiac non-oxidative metabolic fatty acids and cardiotoxic fatty acid metabolites accumulation, has gained more attention to explain the increasing prevalence of DCM. However, whether mammalian Ste20-like kinase 1 (Mst1) plays a role in lipotoxicity in type 2 diabetes-induced cardiomyopathy has not yet been illustrated. Here, we found that Mst1 expression was elevated transcriptionally in the hearts of type 2 diabetes mellitus mice and palmitic acid-treated neonatal rat ventricular myocytes. Adeno-associated virus 9 (AAV9)-mediated Mst1 silencing in db/db mouse hearts significantly alleviated cardiac dysfunction and fibrosis. Notably, Mst1 knockdown in db/db mouse hearts decreased lipotoxic apoptosis and inflammatory response. Mst1 knockdown exerted protective effects through inactivation of MAPK/ERK kinase kinase 1 (MEKK1)/c-Jun N-terminal kinase (JNK) signaling pathway. Moreover, lipotoxicity induced Mst1 expression through promoting the binding of forkhead box O3 (FoxO3) and Mst1 promoter. Conclusively, we elucidated for the first time that Mst1 expression is regulated by FOXO3 under lipotoxicity stimulation and downregulation of Mst1 protects db/db mice from lipotoxic cardiac injury through MEKK1/JNK signaling inhibition, indicating that Mst1 abrogation may be a potential treatment strategy for DCM in type 2 diabetic patients.


Rnd3 suppresses endothelial cell pyroptosis in atherosclerosis through regulation of ubiquitination of TRAF6.

  • Yan Zhang‎ et al.
  • Clinical and translational medicine‎
  • 2023‎

As the main pathological basis for various cardiovascular and cerebrovascular diseases, atherosclerosis has become one of the leading causes of death and disability worldwide. Emerging evidence has suggested that Rho GTPase Rnd3 plays an indisputable role in cardiovascular diseases, although its function in atherosclerosis remains unclear. Here, we found a significant correlation between Rnd3 and pyroptosis of aortic endothelial cells (ECs).


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: