Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 69 papers

Aberrant chimeric RNA GOLM1-MAK10 encoding a secreted fusion protein as a molecular signature for human esophageal squamous cell carcinoma.

  • Hao Zhang‎ et al.
  • Oncotarget‎
  • 2013‎

It is increasingly recognized that chimeric RNAs may exert a novel layer of cellular complexity that contributes to oncogenesis and cancer progression, and could be utilized as molecular biomarkers and therapeutic targets. To date yet no fusion chimeric RNAs have been identified in esophageal cancer, the 6th most frequent cause of cancer death in the world. While analyzing the expression of 32 recurrent cancer chimeric RNAs in esophageal squamous cell carcinoma (ESCC) from patients and cancer cell lines, we identified GOLM1-MAK10, as a highly cancer-enriched chimeric RNA in ESCC. In situ hybridization revealed that the expression of the chimera is largely restricted to cancer cells in patient tumors, and nearly undetectable in non-neoplastic esophageal tissue from normal subjects. The aberrant chimera closely correlated with histologic differentiation and lymph node metastasis. Furthermore, we demonstrate that chimera GOLM1-MAK10 encodes a secreted fusion protein. Mechanistic studies reveal that GOLM1-MAK10 is likely derived from transcription read-through/splicing rather than being generated from a fusion gene. Collectively, these findings provide novel insights into the molecular mechanism involved in ESCC and provide a novel potential target for future therapies. The secreted fusion protein translated from GOLM1-MAK10 could also serve as a unique protein signature detectable by standard non-invasive assays. These observations are critical as there is no clinically useful molecular signature available for detecting this deadly disease or monitoring the treatment response.


Prognostic importance and therapeutic implications of PAK1, a drugable protein kinase, in gastroesophageal junction adenocarcinoma.

  • Zongtai Li‎ et al.
  • PloS one‎
  • 2013‎

Gastroesophageal junction (GEJ) adenocarcinoma is a lethal cancer with rising incidence, yet the molecular biomarkers that have strong prognostic impact and also hold great therapeutic promise remain elusive. We used a data mining approach and identified the p21 protein-activated kinase 1 (PAK1), an oncogene and drugable protein kinase, to be among the most promising targets for GEJ adenocarcinoma. Immunoblot analysis and data mining demonstrated that PAK1 protein and mRNA were upregulated in cancer tissues compared to the noncancerous tissues. Immunohistochemistry revealed PAK1 overexpression in 72.6% of primary GEJ adenocarcinomas (n = 113). A step-wise increase in PAK1 levels was noted from paired normal epithelium, to atypical hyperplasia and adenocarcinoma. PAK1 overexpression in tumor was associated with lymph node (LN) metastasis (P<0.001), advanced tumor stage (P<0.001), large tumor size (P = 0.006), residual surgical margin (P = 0.033), and unfavorable overall survival (P<0.001). Multivariate analysis showed PAK1 overexpression is an independent high-risk prognostic predictor (P<0.001). Collectively, PAK1 is overexpressed during tumorigenic progression and its upregulation correlates with malignant properties mainly relevant to invasion and metastasis. PAK1 expression could serve as a prognostic predictor that holds therapeutic promise for GEJ adenocarcinoma.


Detection of Exosomal PD-L1 RNA in Saliva of Patients With Periodontitis.

  • Jialiang Yu‎ et al.
  • Frontiers in genetics‎
  • 2019‎

Periodontitis is the most prevalent inflammatory disease of the periodontium, and is related to oral and systemic health. Exosomes are emerging as non-invasive biomarker for liquid biopsy. We here evaluated the levels of programmed death-ligand 1 (PD-L1) mRNA in salivary exosomes from patients with periodontitis and non-periodontitis controls. The purposes of this study were to establish a procedure for isolation and detection of mRNA in exosomes from saliva of periodontitis patients, to characterize the level of salivary exosomal PD-L1, and to illustrate its clinical relevance. Bioinformatics analysis suggested that periodontitis was associated with an inflammation gene expression signature, that PD-L1 expression positively correlated with inflammation in periodontitis based on gene set enrichment analysis (GSEA) and that PD-L1 expression was remarkably elevated in periodontitis patients versus control subjects. Exosomal RNAs were successfully isolated from saliva of 61 patients and 30 controls and were subjected to qRT-PCR. Levels of PD-L1 mRNA in salivary exosomes were higher in periodontitis patients than controls (P < 0.01). Salivary exosomal PD-L1 mRNA showed significant difference between the stages of periodontitis. In summary, the protocols for isolating and detecting exosomal RNA from saliva of periodontitis patients were, for the first time, characterized. The current study suggests that assay of exosomes-based PD-L1 mRNA in saliva has potential to distinguish periodontitis from the healthy, and the levels correlate with the severity/stage of periodontitis.


A novel UCHL3 inhibitor, perifosine, enhances PARP inhibitor cytotoxicity through inhibition of homologous recombination-mediated DNA double strand break repair.

  • Zhiwang Song‎ et al.
  • Cell death & disease‎
  • 2019‎

Triple-negative breast cancer (TNBC) treatment remains a great challenge for clinical practice and novel therapeutic strategies are urgently needed. UCHL3 is a deubiquitinase that is overexpressed in TNBC and correlates with poor prognosis. UCHL3 deubiquitinates RAD51 thereby promoting the recruitment of RAD51 to DNA damage sites and augmenting DNA repair. Therefore, UCHL3 overexpression can render cancer cells resistant to DNA damage inducing chemo and radiotherapy, and targeting UCHL3 can sensitize TNBC to radiation and chemotherapy. However, small molecule inhibitors of UCHL3 are yet to be identified. Here we report that perifosine, a previously reported Akt inhibitor, can inhibit UCHL3 in vitro and in vivo. We found low dose (50 nM) perifosine inhibited UCHL3 deubiquitination activity without affecting Akt activity. Furthermore, perifosine enhanced Olaparib-induced growth inhibition in TNBC cells. Mechanistically, perifosine induced RAD51 ubiquitination and blocked the RAD51-BRCA2 interaction, which in turn decreased ionizing radiation-induced foci (IRIF) of Rad51 and, thereby, homologous recombination (HR)-mediated DNA double strand break repair. In addition, combination of perifosine and Olaparib showed synergistic antitumor activity in vivo in TNBC xenograft model. Thus, our present study provides a novel therapeutic approach to optimize PARP inhibitor treatment efficiency.


CircDUSP16 Contributes to Cell Development in Esophageal Squamous Cell Carcinoma by Regulating miR-497-5p/TKTL1 Axis.

  • Limin Ma‎ et al.
  • The Journal of surgical research‎
  • 2021‎

The vital roles of circular RNAs in human cancers have been demonstrated. In this study, we aimed to investigate the functions of circDUSP16 in esophageal squamous cell carcinoma (ESCC) development.


Catalpol ameliorates diabetes-induced testicular injury and modulates gut microbiota.

  • Yihui Zhu‎ et al.
  • Life sciences‎
  • 2021‎

To explore the mechanisms of diabetes mellitus (DM)-induced testicular injury caused by modulation of testicular glycolysis and gut microbiota (GM), and evaluation of the efficacy of catalpol in reversing testicular morbidity.


The deubiquitinase USP9X promotes tumor cell survival and confers chemoresistance through YAP1 stabilization.

  • Lei Li‎ et al.
  • Oncogene‎
  • 2018‎

The Yes-associated protein 1 (YAP1), a major downstream effector of the Hippo pathway, functions as a transcriptional regulator and has an important role in cellular control of organ size and tumor growth. Elevated oncogenic activity of YAP1 has been clarified in different types of human cancers, which contributes to cancer cell survival and chemoresistance. However, the molecular mechanism of YAP1 overexpression in cancer is still not clear. Here we demonstrate that the deubiquitination enzyme USP9X deubiquitinates and stabilizes YAP1, thereby promoting cancer cell survival. Increased USP9X expression correlates with increased YAP1 protein in human breast cancer cell lines and patient samples. Moreover, depletion of USP9X increases YAP1 polyubiquitination, which in turn elevates YAP1 turnover and cell sensitivity to chemotherapy. Overall, our study establishes the USP9X-YAP1 axis as an important regulatory mechanism of breast cancer and provides a rationale for potential therapeutic interventions in the treatment of breast cancer.


Neoadjuvant Chemoradiotherapy Followed by Surgery Versus Surgery Alone for Locally Advanced Squamous Cell Carcinoma of the Esophagus (NEOCRTEC5010): A Phase III Multicenter, Randomized, Open-Label Clinical Trial.

  • Hong Yang‎ et al.
  • Journal of clinical oncology : official journal of the American Society of Clinical Oncology‎
  • 2018‎

Purpose The efficacy of neoadjuvant chemoradiotherapy (NCRT) plus surgery for locally advanced esophageal squamous cell carcinoma (ESCC) remains controversial. In this trial, we compared the survival and safety of NCRT plus surgery with surgery alone in patients with locally advanced ESCC. Patients and Methods From June 2007 to December 2014, 451 patients with potentially resectable thoracic ESCC, clinically staged as T1-4N1M0/T4N0M0, were randomly allocated to NCRT plus surgery (group CRT; n = 224) and surgery alone (group S; n = 227). In group CRT, patients received vinorelbine 25 mg/m2 intravenously (IV) on days 1 and 8 and cisplatin 75 mg/m2 IV day 1, or 25 mg/m2 IV on days 1 to 4 every 3 weeks for two cycles, with a total concurrent radiation dose of 40.0 Gy administered in 20 fractions of 2.0 Gy on 5 days per week. In both groups, patients underwent McKeown or Ivor Lewis esophagectomy. The primary end point was overall survival. Results The pathologic complete response rate was 43.2% in group CRT. Compared with group S, group CRT had a higher R0 resection rate (98.4% v 91.2%; P = .002), a better median overall survival (100.1 months v 66.5 months; hazard ratio, 0.71; 95% CI, 0.53 to 0.96; P = .025), and a prolonged disease-free survival (100.1 months v 41.7 months; hazard ratio, 0.58; 95% CI, 0.43 to 0.78; P < .001). Leukopenia (48.9%) and neutropenia (45.7%) were the most common grade 3 or 4 adverse events during chemoradiotherapy. Incidences of postoperative complications were similar between groups, with the exception of arrhythmia (group CRT: 13% v group S: 4.0%; P = .001). Peritreatment mortality was 2.2% in group CRT versus 0.4% in group S ( P = .212). Conclusion This trial shows that NCRT plus surgery improves survival over surgery alone among patients with locally advanced ESCC, with acceptable and manageable adverse events.


C. elegans colony formation as a condensation phenomenon.

  • Yuping Chen‎ et al.
  • Nature communications‎
  • 2021‎

Phase separation at the molecular scale affects many biological processes. The theoretical requirements for phase separation are fairly minimal, and there is growing evidence that analogous phenomena occur at other scales in biology. Here we examine colony formation in the nematode C. elegans as a possible example of phase separation by a population of organisms. The population density of worms determines whether a colony will form in a thresholded fashion, and a simple two-compartment ordinary differential equation model correctly predicts the threshold. Furthermore, small, round colonies sometimes fuse to form larger, round colonies, and a phenomenon akin to Ostwald ripening - a coarsening process seen in many systems that undergo phase separation - also occurs. These findings support the emerging view that the principles of microscopic phase separation can also apply to collective behaviors of living organisms.


Mitochondrial calcium uniporter promotes cell proliferation and migration in esophageal cancer.

  • Yu Miao‎ et al.
  • Oncology letters‎
  • 2021‎

Increasing evidence has suggested that mitochondrial calcium uniporter (MCU) is involved in various types of cancer. However, its functions remain unclear in esophageal cancer. The aim of the present study was to explore its abnormal expression and clinical implications in esophageal cancer. A total of 110 patients with esophageal cancer were enrolled in the study. Western blotting was performed to examine the protein expression levels of MCU in 8 pairs of esophageal cancer and adjacent normal tissues. Using immunochemistry, a total of 110 esophageal cancer specimens were analyzed to identify the association between MCU expression and clinicopathological features of patients with esophageal cancer. Furthermore, immunofluorescence of MCU was performed. Pearson's correlation analysis was performed between MCU and hypoxia inducible factor (HIF)-1α/VEGF/E-cadherin/Vimentin expression based on western blotting. After KYSE-150 and TE-1 cells were treated with the MCU agonist Spermine and a small interfering RNA against MCU (si-MCU), a series of functional assays were performed, including Cell Counting Kit-8, colony formation and Transwell assays. The results revealed that, compared with in adjacent normal tissues, MCU was highly expressed in esophageal cancer tissues. MCU expression was significantly associated with depth of invasion, lymph node metastasis, TNM stage and distant metastasis. Moreover, MCU was significantly correlated with HIF-1α/VEGF/E-cadherin/Vimentin in esophageal cancer tissues. MCU overexpression promoted VEGF, MMP2, Vimentin and N-cadherin expression, while it inhibited E-cadherin expression in KYSE-150 and TE-1 cells, and opposite results were observed after transfection with si-MCU. Furthermore, MCU overexpression accelerated the proliferation and migration of KYSE-150 and TE-1 cells. Thus, the current findings suggested that high MCU expression may participate in cell proliferation, migration and epithelial-mesenchymal transition in esophageal cancer.


Clostridium butyricum RH2 Alleviates Chronic Foot Shock Stress-Induced Behavioral Deficits in Rats via PAI-1.

  • Wenying Zhang‎ et al.
  • Frontiers in pharmacology‎
  • 2022‎

Recent investigations have demonstrated that the chronic stress-induced behavioral disorders can be ameliorated by probiotics including Clostridium butyricum (C. butyricum) via the gut-brain-axis. However, the molecular mechanisms underlying the beneficial effects of C. butyricum on brain remain largely unknown. Here, we investigated whether chronic foot shock stress (CFSS) paradigm used for a hypertensive animal model could induce mood disorders such as anxiety, depression and cognitive impairments. Then, we assessed the impact of C. butyricum RH2 on the behavior disorders and neurobiological alterations in the hippocampus. Male Sprague-Dawley (SD) rats received intermittent electric shocks for consecutive 14 days and were treated with C. butyricum RH2 for 17 days. Anxiety- or depression-like behaviors were evaluated by open field test (OFT), and elevated plus maze (EPM). The Morris water maze test (MWM) was used to evaluate the cognitive functions. CFSS intervention led to mild anxiety- or depression-like behavior or cognitive impairment and C. butyricum RH2 treatment reversed the CFSS-induced symptoms. The serum ACTH or CORT was increased following CFSS but was completely reversed by C. butyricum RH2 treatment. In the hippocampus of CFSS rats, the expressions of BDNF and TrkB were downregulated but proBDNF and P75NTR were upregulated. These expression changes were partially reversed by C. butyricum RH2, suggesting a mode of action on BDNF and proBDNF balance. CFSS exposure resulted in downregulation of tissue-type plasminogen activator (tPA) but upregulation of plasminogen activator inhibitor 1(PAI-1), which could contribute to the decrease in BDNF by reduced conversion from proBDNF to BDNF in the hippocampus. C. butyricum RH2 treatment reversed the upregulated PAI-1 but not the downregulated tPA, which was in parallel with the amelioration of behavioral abnormalities, suggesting a novel tPA independent mechanism for PAI-1 action. Our results demonstrate for the first time that C. butyricum RH2 attenuates stress-induced behavior disorders via inhibiting the expression of brain PAI-1.


The oncogenic roles of nuclear receptor coactivator 1 in human esophageal carcinoma.

  • Lu Wang‎ et al.
  • Cancer medicine‎
  • 2018‎

Nuclear receptor coactivator 1 (NCOA1) plays crucial roles in the regulation of gene expression mediated by a wide spectrum of steroid receptors such as androgen receptor (AR), estrogen receptor α (ER α), and estrogen receptor β (ER β). Therefore, dysregulations of NCOA1 have been found in a variety of cancer types. However, the clinical relevance and the functional roles of NCOA1 in human esophageal squamous cell carcinoma (ESCC) are less known. We found in this study that elevated levels of NCOA1 protein and/or mRNA as well as amplification of the NCOA1 gene occur in human ESCC. Elevated levels of NCOA1 due to these dysregulations were not only associated with more aggressive clinic-pathologic parameters but also poorer survival. Results from multiple cohorts of ESCC patients strongly suggest that the levels of NCOA1 could serve as an independent predictor of overall survival. In addition, silencing NCOA1 in ESCC cells remarkably decreased proliferation, migration, and invasion. These findings not only indicate that NCOA1 plays important roles in human ESCC but the levels of NCOA1 also could serve as a potential prognostic biomarker of ESCC and targeting NCOA1 could be an efficacious strategy in ESCC treatment.


USP13 regulates the RAP80-BRCA1 complex dependent DNA damage response.

  • Yunhui Li‎ et al.
  • Nature communications‎
  • 2017‎

BRCA1 regulates multiple cellular pathways that maintain genomic stability including cell cycle checkpoints, DNA repair, protein ubiquitination, chromatin remodelling, transcriptional regulation and apoptosis. Receptor-associated protein 80 (RAP80) helps recruit BRCA1 to double-strand breaks (DSBs) through the scaffold protein CCDC98 (Abraxas) and facilitates DNA damage response (DDR). However, the regulation of RAP80-BRCA1 complex is still unclear. Here we report that a deubiquitinase, USP13, regulates DDR by targeting RAP80. Mechanistically, USP13 is phosphorylated by ATM following DNA damage which, in turn, facilitates its DSB localization. USP13, in turn, deubiquitinates RAP80 and promotes RAP80 recruitment and proper DDR. Depleting or inhibiting USP13 sensitizes ovarian cancer cells to cisplatin and PARP inhibitor (olaparib) while overexpression of USP13 renders ovarian cancer cells resistant to chemotherapy. Overall, we identify USP13 as a regulator of DNA repair and reveal a model in which a phosphorylation-deubiquitination axis dynamically regulates RAP80-BRCA1 complex foci formation and function.


Loganin alleviates testicular damage and germ cell apoptosis induced by AGEs upon diabetes mellitus by suppressing the RAGE/p38MAPK/NF-κB pathway.

  • Yuping Chen‎ et al.
  • Journal of cellular and molecular medicine‎
  • 2020‎

Diabetes mellitus (DM) damages male reproduction at multiple levels, such as endocrine secretion, spermatogenesis and penile erection. We herein investigated the protective effects and mechanism of loganin targeting the advanced glycation end products (AGEs)/receptor for AGEs (RAGE)/p38 mitogen-activated protein kinase (p38MAPK)/NF-κB signalling pathway. Loganin relieved the general DM symptoms and decreased the blood glucose level of KK-Ay DM mice. Haematoxylin-eosin staining demonstrated that loganin ameliorated testicular histology and function and enhanced the activities of testis-specific markers lactate dehydrogenase (LDH), acid phosphatase (ACP) and gamma-glutamyl transferase (γ-GT). Loganin also showed evident anti-oxidative stress, anti-apoptotic and anti-inflammatory effects on DM-induced reproductive damage by restoring glutathione (GSH) level and superoxide dismutase (SOD) activity, as well as reducing reactive oxygen species (ROS) level and Bax/Bcl-2 ratio in vivo and in vitro. Western blotting exhibited that loganin significantly inhibited the AGEs/RAGE/p38MAPK/NF-κB signalling pathway. Acridine orange and ethidium bromide staining (AOEB) and Western blotting showed that loganin in combination with inhibitors of RAGE, p38MAPK and NF-κB exerted stronger anti-apoptotic effects on AGE-induced GC-2 cell damage compared with loganin alone. In conclusion, loganin can protect against DM-induced reproductive damage, probably by suppressing the AGEs/RAGE/p38MAPK/NF-κB pathway.


Splice variant of growth hormone-releasing hormone receptor drives esophageal squamous cell carcinoma conferring a therapeutic target.

  • Xiao Xiong‎ et al.
  • Proceedings of the National Academy of Sciences of the United States of America‎
  • 2020‎

The extrahypothalamic growth hormone-releasing hormone (GHRH) and its cognate receptors (GHRH-Rs) and splice variants are expressed in a variety of cancers. It has been shown that the pituitary type of GHRH-R (pGHRH-R) mediates the inhibition of tumor growth induced by GHRH-R antagonists. However, GHRH-R antagonists can also suppress some cancers that do not express pGHRH-R, yet the underlying mechanisms have not been determined. Here, using human esophageal squamous cell carcinoma (ESCC) as a model, we were able to reveal that SV1, a known splice variant of GHRH-R, is responsible for the inhibition induced by GHRH-R antagonist MIA-602. We demonstrated that GHRH-R splice variant 1 (SV1) is a hypoxia-driven promoter of tumor progression. Hypoxia-elevated SV1 activates a key glycolytic enzyme, muscle-type phosphofructokinase (PFKM), through the nuclear factor kappa B (NF-κB) pathway, which enhances glycolytic metabolism and promotes progression of ESCC. The malignant actions induced by the SV1-NF-κB-PFKM pathway could be reversed by MIA-602. Altogether, our studies demonstrate a mechanism by which GHRH-R antagonists target SV1. Our findings suggest that SV1 is a hypoxia-induced oncogenic promoter which can be an alternative target of GHRH-R antagonists.


miRNA-765 mediates multidrug resistance via targeting BATF2 in gastric cancer cells.

  • Wan Lin‎ et al.
  • FEBS open bio‎
  • 2020‎

Elucidation of the mechanisms underlying multidrug resistance (MDR) is required to ensure the efficacy of chemotherapy against gastric cancer (GC). To investigate this issue, here we identified that microRNA-765 (miRNA-765) is up-regulated both in MDR GC cell lines and in specimens from patients who are not responding to chemotherapy. In addition, down-regulation of miRNA-765 increased the sensitivity of GC cells to anticancer drugs, whereas its overexpression had the opposite effect. Moreover, miRNA-765 suppressed drug-induced apoptosis and positively regulated the expression of MDR-related genes. Finally, we showed that the basic leucine zipper ATF-like transcription factor 2, a tumor suppressor gene, is the functional target of miRNA-765. In summary, these results suggest that miRNA-765 may promote MDR via basic leucine zipper ATF-like transcription factor 2 in GC cells.


An immune evasion mechanism with IgG4 playing an essential role in cancer and implication for immunotherapy.

  • Hui Wang‎ et al.
  • Journal for immunotherapy of cancer‎
  • 2020‎

Recent impressive advances in cancer immunotherapy have been largely derived from cellular immunity. The role of humoral immunity in carcinogenesis has been less understood. Based on our previous observations we hypothesize that an immunoglobulin subtype IgG4 plays an essential role in cancer immune evasion.


Targeting PELP1 Attenuates Angiogenesis and Enhances Chemotherapy Efficiency in Colorectal Cancer.

  • Jianlin Zhu‎ et al.
  • Cancers‎
  • 2022‎

Abnormal angiogenesis is one of the important hallmarks of colorectal cancer as well as other solid tumors. Optimally, anti-angiogenesis therapy could restrain malignant angiogenesis to control tumor expansion. PELP1 is as a scaffolding oncogenic protein in a variety of cancer types, but its involvement in angiogenesis is unknown. In this study, PELP1 was found to be abnormally upregulated and highly coincidental with increased MVD in CRC. Further, treatment with conditioned medium (CM) from PELP1 knockdown CRC cells remarkably arrested the function of human umbilical vein endothelial cells (HUVECs) compared to those treated with CM from wildtype cells. Mechanistically, the STAT3/VEGFA axis was found to mediate PELP1-induced angiogenetic phenotypes of HUVECs. Moreover, suppression of PELP1 reduced tumor growth and angiogenesis in vivo accompanied by inactivation of STAT3/VEGFA pathway. Notably, in vivo, PELP1 suppression could enhance the efficacy of chemotherapy, which is caused by the normalization of vessels. Collectively, our findings provide a preclinical proof of concept that targeting PELP1 to decrease STAT3/VEGFA-mediated angiogenesis and improve responses to chemotherapy due to normalization of vessels. Given the newly defined contribution to angiogenesis of PELP1, targeting PELP1 may be a potentially ideal therapeutic strategy for CRC as well as other solid tumors.


Neoantigen-based cancer vaccination using chimeric RNA-loaded dendritic cell-derived extracellular vesicles.

  • Xiao Xiong‎ et al.
  • Journal of extracellular vesicles‎
  • 2022‎

Cancer vaccines critically rely on the availability of targetable immunogenic cancer-specific neoepitopes. However, mutation-based immunogenic neoantigens are rare or even non-existent in subgroups of cancer types. To address this issue, we exploited a cancer-specific aberrant transcription-induced chimeric RNA, designated A-Pas chiRNA, as a possible source of clinically relevant and targetable neoantigens. A-Pas chiRNA encodes a recently discovered cancer-specific chimeric protein that comprises full-length astrotactin-2 (ASTN2) C-terminally fused in-frame to the antisense sequence of the 18th intron of pregnancy-associated plasma protein-A (PAPPA). We used extracellular vesicles (EVs) from A-Pas chiRNA-transfected dendritic cells (DCs) to produce the cell-free anticancer vaccine DEXA-P . Treatment of immunocompetent cancer-bearing mice with DEXA-P inhibited tumour growth and prolonged animal survival. In summary, we demonstrate for the first time that cancer-specific transcription-induced chimeric RNAs can be exploited to produce a cell-free cancer vaccine that induces potent CD8+ T cell-mediated anticancer immunity. Our novel approach may be particularly useful for developing cancer vaccines to treat malignancies with low mutational burden or without mutation-based antigens. Moreover, this cell-free anticancer vaccine approach may offer several practical advantages over cell-based vaccines, such as ease of scalability and genetic modifiability as well as enhanced shelf life.


Serum microRNAs as biomarkers for the diagnosis of papillary thyroid carcinoma: a meta-analysis.

  • Yuping Chen‎ et al.
  • Bosnian journal of basic medical sciences‎
  • 2022‎

Papillary thyroid carcinoma (PTC) is the most common form of thyroid cancer. Several studies have proposed serum microRNAs (miRNAs) as novel biomarkers for diagnosing PTC. In this study, we conducted a meta-analysis aiming to investigate the overall diagnostic accuracy of serum miRNAs in PTC detection. Three online databases including PubMed, EMBASE and Cochrane Library were searched up to 1 May 2021. We systematically reviewed studies evaluating the value of serum miRNAs in diagnosing PTC, and then summarized the area under receiver operating characteristics curve (AUROC), sensitivity, specificity, and diagnostic odds ratio to assess the accuracy of serum miRNAs for the discrimination between patients with PTC and patients with benign thyroid nodules and healthy controls. We included 32 studies from 6 articles. Overall, there were 463 PTC patients, 334 patients with benign thyroid nodules, and 104 healthy controls. The results showed that the summary sensitivity and specificity were 76% (95% confidence interval [CI]: 68%‒83%) and 86% (95% CI: 80%‒91%), respectively, and that the summary AUROC was 0.89 (95% CI: 0.86‒0.91), when serum miRNAs were used for discriminating between PTC patients and those with benign nodules. On the other hand, the summary sensitivity and specificity of serum miRNAs for discriminating between PTC patients and healthy controls were 82% (95% CI: 77%‒86%) and 84% (95% CI: 76%‒90%), respectively, and the summary AUROC was 0.89 (95% CI: 0.86‒0.92). We found that serum miRNAs have good diagnostic performance for the discrimination between patients with PTC and patients with benign nodules and healthy controls, and thus have considerable potential as novel minimally invasive tools for detecting PTC.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: