Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 4 papers out of 4 papers

Left inferior frontal gyrus is critical for response inhibition.

  • Diane Swick‎ et al.
  • BMC neuroscience‎
  • 2008‎

Lesion studies in human and non-human primates have linked several different regions of prefrontal cortex (PFC) with the ability to inhibit inappropriate motor responses. However, recent functional neuroimaging studies have specifically implicated right inferior PFC in response inhibition. Right frontal dominance for inhibitory motor control has become a commonly accepted view, although support for this position has not been consistent. Particularly conspicuous is the lack of data on the importance of the homologous region in the left hemisphere. To investigate whether the left inferior frontal gyrus (IFG) is critical for response inhibition, we used neuropsychological methodology with carefully characterized brain lesions in neurological patients.


Are the neural correlates of stopping and not going identical? Quantitative meta-analysis of two response inhibition tasks.

  • Diane Swick‎ et al.
  • NeuroImage‎
  • 2011‎

Neuroimaging studies have utilized two primary tasks to assess motor response inhibition, a major form of inhibitory control: the Go/NoGo (GNG) task and the Stop-Signal Task (SST). It is unclear, however, whether these two tasks engage identical neural systems. This question is critical because assumptions that both tasks are measuring the same cognitive construct have theoretical and practical implications. Many papers have focused on a right hemisphere dominance for response inhibition, with the inferior frontal gyrus (IFG) and the middle frontal gyrus (MFG) receiving the bulk of attention. Others have emphasized the role of the pre-supplementary motor area (pre-SMA). The current study performed separate quantitative meta-analyses using the Activation Likelihood Estimate (ALE) method to uncover the common and distinctive clusters of activity in GNG and SST. Major common clusters of activation were located in the right anterior insula and the pre-SMA. Insular activation was right hemisphere dominant in GNG but more bilaterally distributed in SST. Differences between the tasks were observed in two major cognitive control networks: (1) the fronto-parietal network that mediates adaptive online control, and (2) the cingulo-opercular network implicated in maintaining task set (Dosenbach et al., 2007) and responding to salient stimuli (Seeley et al., 2007). GNG engaged the fronto-parietal control network to a greater extent than SST, with prominent foci located in the right MFG and right inferior parietal lobule. Conversely, SST engaged the cingulo-opercular control network to a greater extent, with more pronounced activations in the left anterior insula and bilateral thalamus. The present results reveal the anterior insula's importance in response inhibition tasks and confirm the role of the pre-SMA. Furthermore, GNG and SST tasks are not completely identical measures of response inhibition, as they engage overlapping but distinct neural circuits.


Enhanced Attentional Bias Variability in Post-Traumatic Stress Disorder and its Relationship to More General Impairments in Cognitive Control.

  • Diane Swick‎ et al.
  • Scientific reports‎
  • 2017‎

Hypervigilance towards threat is one of the defining features of post-traumatic stress disorder (PTSD). This symptom predicts that individuals with PTSD will be biased to attend to potential dangers in the environment. However, cognitive tasks designed to assess visual-spatial attentional biases have shown mixed results. A newer proposal suggests that attentional bias is not a static phenomenon, but rather is characterized by fluctuations towards and away from threat. Here, we tested 28 combat Veterans with PTSD and 28 control Veterans on a dot probe task with negative-neutral word pairs. Combat-related words and generically negative words were presented in separate blocks. Replicating previous results, neither group showed a bias to attend towards or away from threat, but PTSD patients showed greater attentional bias variability (ABV), which correlated with symptom severity. However, the cognitive processes indexed by ABV are unclear. The present results indicated that ABV was strongly correlated with standard deviation at the reaction time (RT) level and with excessively long RTs (ex-Gaussian tau) related to cognitive failures. These findings suggest an overall increase in response variability unrelated to threat-related biases in spatial attention, and support a disruption in more general cognitive control processes in PTSD.


Angry and Fearful Face Conflict Effects in Post-traumatic Stress Disorder.

  • Victoria Ashley‎ et al.
  • Frontiers in psychology‎
  • 2019‎

In the presence of threatening stimuli, post-traumatic stress disorder (PTSD) can manifest as hypervigilance for threat and disrupted attentional control. PTSD patients have shown exaggerated interference effects on tasks using trauma-related or threat stimuli. In studies of PTSD, faces with negative expressions are often used as threat stimuli, yet angry and fearful facial expressions may elicit different responses. The modified Eriksen flanker task, or the emotional face flanker, has been used to examine response interference. We compared 23 PTSD patients and 23 military controls on an emotional face flanker task using angry, fearful and neutral expressions. Participants identified the emotion of a central target face flanked by faces with either congruent or incongruent emotions. As expected, both groups showed slower reaction times (RTs) and decreased accuracy on emotional target faces, relative to neutral. Unexpectedly, both groups showed nearly identical interference effects on fearful and neutral target trials. However, post hoc testing suggested that PTSD patients showed faster RTs than controls on congruent angry faces (target and flanker faces both angry) relative to incongruent, although this finding should be interpreted with caution. This possible RT facilitation effect with angry, but not fearful faces, also correlated positively with self-report measures of PTSD symptoms. These results suggest that PTSD patients may be more vigilant for, or primed to respond to, the appearance of angry faces, relative to fearful, but further study is needed.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: