Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 26 papers

Experimental Infection of Domestic Pigs with African Swine Fever Virus Isolated in 2019 in Mongolia.

  • Chester D McDowell‎ et al.
  • Viruses‎
  • 2022‎

African swine fever (ASF) is an infectious viral disease caused by African swine fever virus (ASFV), that causes high mortality in domestic swine and wild boar (Sus scrofa). Currently, outbreaks are mitigated through strict quarantine measures and the culling of affected herds, resulting in massive economic losses to the global pork industry. In 2019, an ASFV outbreak was reported in Mongolia, describing a rapidly progressing clinical disease and gross lesions consistent with the acute form of ASF; the virus was identified as a genotype II virus. Due to the limited information on clinical disease and viral dynamics within hosts available from field observations of the Mongolian isolates, we conducted the present study to further evaluate the progression of clinical disease, virulence, and pathology of an ASFV Mongolia/2019 field isolate (ASFV-MNG19), by experimental infection of domestic pigs. Intramuscular inoculation of domestic pigs with ASFV-MNG19 resulted in clinical signs and viremia at 3 days post challenge (DPC). Clinical disease rapidly progressed, resulting in the humane euthanasia of all pigs by 7 DPC. ASFV-MNG19 infected pigs had viremic titers of 108 TCID50/mL by 5 DPC and shed virus in oral secretions late in disease, as determined from oropharyngeal swabs. Whole-genome sequencing confirmed that the ASFV-MNG19 strain used in this study was a genotype II strain highly similar to other regional strains. In conclusion, we demonstrate that ASFV-MNG19 is a virulent genotype II ASFV strain that causes acute ASF in domestic swine.


Characterization of SARS-CoV-2 Spike mutations important for infection of mice and escape from human immune sera.

  • Raveen Rathnasinghe‎ et al.
  • Nature communications‎
  • 2022‎

Due to differences in human and murine angiotensin converting enzyme 2 (ACE-2) receptor, initially available SARS-CoV-2 isolates could not infect mice. Here we show that serial passaging of USA-WA1/2020 strain in mouse lungs results in "mouse-adapted" SARS-CoV-2 (MA-SARS-CoV-2) with mutations in S, M, and N genes, and a twelve-nucleotide insertion in the S gene. MA-SARS-CoV-2 infection causes mild disease, with more pronounced morbidity depending on genetic background and in aged and obese mice. Two mutations in the S gene associated with mouse adaptation (N501Y, H655Y) are present in SARS-CoV-2 variants of concern (VoCs). N501Y in the receptor binding domain of viruses of the B.1.1.7, B.1.351, P.1 and B.1.1.529 lineages (Alpha, Beta, Gamma and Omicron variants) is associated with high transmissibility and allows VoCs to infect wild type mice. We further show that S protein mutations of MA-SARS-CoV-2 do not affect neutralization efficiency by human convalescent and post vaccination sera.


The N501Y mutation in SARS-CoV-2 spike leads to morbidity in obese and aged mice and is neutralized by convalescent and post-vaccination human sera.

  • Raveen Rathnasinghe‎ et al.
  • medRxiv : the preprint server for health sciences‎
  • 2021‎

The current COVID-19 (coronavirus disease 19) pandemic, caused by SARS-CoV-2, disproportionally affects the elderly and people with comorbidities like obesity and associated type 2 diabetes mellitus. Small animal models are crucial for the successful development and validation of antiviral vaccines, therapies and to study the role that comorbidities have on the outcome of viral infections. The initially available SARS-CoV-2 isolates require adaptation in order to use the mouse angiotensin converting enzyme 2 (mACE-2) entry receptor and to productively infect the cells of the murine respiratory tract. We have "mouse-adapted" SARS-CoV-2 by serial passaging a clinical virus isolate in the lungs of mice. We then used low doses of this virus in mouse models for advanced age, diabetes and obesity. Similar to SARS-CoV-2 infection in humans, the outcome of infection with mouse-adapted SARS-CoV-2 resulted in enhanced morbidity in aged and diabetic obese mice. Mutations associated with mouse adaptation occurred in the S, M, N and ORF8 genes. Interestingly, one mutation in the receptor binding domain of the S protein results in the change of an asparagine to tyrosine residue at position 501 (N501Y). This mutation is also present in the newly emerging SARS-CoV-2 variant viruses reported in the U.K. (20B/501Y.V1, B1.1.7 lineage) that is epidemiologically associated with high human to human transmission. We show that human convalescent and post vaccination sera can neutralize the newly emerging N501Y virus variant with similar efficiency as that of the reference USA-WA1/2020 virus, suggesting that current SARS-CoV-2 vaccines will protect against the 20B/501Y.V1 strain.


Experimental re-infected cats do not transmit SARS-CoV-2.

  • Natasha N Gaudreault‎ et al.
  • Emerging microbes & infections‎
  • 2021‎

SARS-CoV-2 is the causative agent of COVID-19 and responsible for the current global pandemic. We and others have previously demonstrated that cats are susceptible to SARS-CoV-2 infection and can efficiently transmit the virus to naïve cats. Here, we address whether cats previously exposed to SARS-CoV-2 can be re-infected with SARS-CoV-2. In two independent studies, SARS-CoV-2-infected cats were re-challenged with SARS-CoV-2 at 21 days post primary challenge (DPC) and necropsies performed at 4, 7 and 14 days post-secondary challenge (DP2C). Sentinels were co-mingled with the re-challenged cats at 1 DP2C. Clinical signs were recorded, and nasal, oropharyngeal, and rectal swabs, blood, and serum were collected and tissues examined for histologic lesions. Viral RNA was transiently shed via the nasal, oropharyngeal and rectal cavities of the re-challenged cats. Viral RNA was detected in various tissues of re-challenged cats euthanized at 4 DP2C, mainly in the upper respiratory tract and lymphoid tissues, but less frequently and at lower levels in the lower respiratory tract when compared to primary SARS-CoV-2 challenged cats at 4 DPC. Viral RNA and antigen detected in the respiratory tract of the primary SARS-CoV-2 infected cats at early DPCs were absent in the re-challenged cats. Naïve sentinels co-housed with the re-challenged cats did not shed virus or seroconvert. Together, our results indicate that cats previously infected with SARS-CoV-2 can be experimentally re-infected with SARS-CoV-2; however, the levels of virus shed was insufficient for transmission to co-housed naïve sentinels. We conclude that SARS-CoV-2 infection in cats induces immune responses that provide partial, non-sterilizing immune protection against re-infection.


Evaluation of A Baculovirus-Expressed VP2 Subunit Vaccine for the Protection of White-Tailed Deer (Odocoileus virginianus) from Epizootic Hemorrhagic Disease.

  • Sun Young Sunwoo‎ et al.
  • Vaccines‎
  • 2020‎

Epizootic hemorrhagic disease virus (EHDV) is an arthropod-transmitted RNA virus and the causative agent of epizootic hemorrhagic disease (EHD) in wild and domestic ruminants. In North America, white-tailed deer (WTD) experience the highest EHD-related morbidity and mortality, although clinical disease is reported in cattle during severe epizootics. No commercially licensed EHDV vaccine is available in North America. The objective of this study was to develop and evaluate a subunit vaccine candidate to control EHD in WTD. Recombinant VP2 (rVP2) outer capsid proteins of EHDV serotypes 2 (EHDV-2) and 6 (EHDV-6) were produced in a baculovirus-expression system. Mice and cattle vaccinated with EHDV-2 or EHDV-6 rVP2 produced homologous virus-neutralizing antibodies. In an immunogenicity/efficacy study, captive-bred WTD received 2 doses of EHDV-2 rVP2 or sham vaccine, then were challenged with wild-type EHDV-2 at 30 d post vaccination. None of the rVP2-vaccinated deer developed clinical disease, no viral RNA was detected in their blood or tissues (liver, lung, spleen, kidney), and no EHDV-induced lesions were observed. Sham-vaccinated deer developed clinical disease with viremia and typical EHD vascular lesions. Here, we demonstrate a rVP2 subunit vaccine that can provide protective immunity from EHDV infection and which may serve as an effective tool in preventing clinical EHD and reducing virus transmission.


SARS-CoV-2 infection, disease and transmission in domestic cats.

  • Natasha N Gaudreault‎ et al.
  • Emerging microbes & infections‎
  • 2020‎

Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) is the cause of Coronavirus Disease 2019 (COVID-19) and responsible for the current pandemic. Recent SARS-CoV-2 susceptibility studies in cats show that the virus can replicate in these companion animals and transmit to other cats. Here, we present an in-depth study of SARS-CoV-2 infection, disease and transmission in domestic cats. Cats were challenged with SARS-CoV-2 via intranasal and oral routes. One day post challenge (DPC), two sentinel cats were introduced. Animals were monitored for clinical signs, clinicopathological abnormalities and viral shedding. Postmortem examinations were performed at 4, 7 and 21 DPC. Viral RNA was not detected in blood but transiently in nasal, oropharyngeal and rectal swabs and bronchoalveolar lavage fluid as well as various tissues. Tracheobronchoadenitis of submucosal glands with the presence of viral RNA and antigen was observed in airways of the infected cats. Serology showed that both, principals and sentinels, developed antibodies to SARS-CoV-2. All animals were clinically asymptomatic during the course of the study and capable of transmitting SARS-CoV-2 to sentinels. The results of this study are critical for understanding the clinical course of SARS-CoV-2 in a naturally susceptible host species, and for risk assessment.


Rift Valley fever virus Gn V5-epitope tagged virus enables identification of UBR4 as a Gn interacting protein that facilitates Rift Valley fever virus production.

  • Nicole Bracci‎ et al.
  • Virology‎
  • 2022‎

Rift Valley fever virus (RVFV) is an arbovirus that was first reported in the Rift Valley of Kenya which causes significant disease in humans and livestock. RVFV is a tri-segmented, negative-sense RNA virus consisting of a L, M, and S segments with the M segment encoding the glycoproteins Gn and Gc. Host factors that interact with Gn are largely unknown. To this end, two viruses containing an epitope tag (V5) on the Gn protein in position 105 or 229 (V5Gn105 and V5Gn229) were generated using the RVFV MP-12 vaccine strain as a backbone. The V5-tag insertion minimally impacted Gn functionality as measured by replication kinetics, Gn localization, and antibody neutralization assays. A proteomics-based approach was used to identify novel Gn-binding host proteins, including the E3 ubiquitin-protein ligase, UBR4. Depletion of UBR4 resulted in a significant decrease in RVFV titers and a reduction in viral RNA production.


Infection and transmission of ancestral SARS-CoV-2 and its alpha variant in pregnant white-tailed deer.

  • Konner Cool‎ et al.
  • Emerging microbes & infections‎
  • 2022‎

ABSTRACTSARS-CoV-2 was first reported circulating in human populations in December 2019 and has since become a global pandemic. Recent history involving SARS-like coronavirus outbreaks have demonstrated the significant role of intermediate hosts in viral maintenance and transmission. Evidence of SARS-CoV-2 natural infection and experimental infections of a wide variety of animal species has been demonstrated, and in silico and in vitro studies have indicated that deer are susceptible to SARS-CoV-2 infection. White-tailed deer (WTD) are amongst the most abundant and geographically widespread wild ruminant species in the US. Recently, WTD fawns were shown to be susceptible to SARS-CoV-2. In the present study, we investigated the susceptibility and transmission of SARS-CoV-2 in adult WTD. In addition, we examined the competition of two SARS-CoV-2 isolates, representatives of the ancestral lineage A and the alpha variant of concern (VOC) B.1.1.7 through co-infection of WTD. Next-generation sequencing was used to determine the presence and transmission of each strain in the co-infected and contact sentinel animals. Our results demonstrate that adult WTD are highly susceptible to SARS-CoV-2 infection and can transmit the virus through direct contact as well as vertically from doe to fetus. Additionally, we determined that the alpha VOC B.1.1.7 isolate of SARS-CoV-2 outcompetes the ancestral lineage A isolate in WTD, as demonstrated by the genome of the virus shed from nasal and oral cavities from principal infected and contact animals, and from the genome of virus present in tissues of principal infected deer, fetuses and contact animals.


Susceptibility of sheep to experimental co-infection with the ancestral lineage of SARS-CoV-2 and its alpha variant.

  • Natasha N Gaudreault‎ et al.
  • bioRxiv : the preprint server for biology‎
  • 2021‎

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is responsible for a global pandemic that has had significant impacts on human health and economies worldwide. SARS-CoV-2 is highly transmissible and the cause of coronavirus disease 2019 (COVID-19) in humans. A wide range of animal species have also been shown to be susceptible to SARS-CoV-2 infection by experimental and/or natural infections. Domestic and large cats, mink, ferrets, hamsters, deer mice, white-tailed deer, and non-human primates have been shown to be highly susceptible, whereas other species such as mice, dogs, pigs, and cattle appear to be refractory to infection or have very limited susceptibility. Sheep (Ovis aries) are a commonly farmed domestic ruminant that have not previously been thoroughly investigated for their susceptibility to SARS-CoV-2. Therefore, we performed in vitro and in vivo studies which consisted of infection of ruminant-derived cell cultures and experimental challenge of sheep to investigate their susceptibility to SARS-CoV-2. Our results showed that sheep-derived cell cultures support SARS-CoV-2 replication. Furthermore, experimental challenge of sheep demonstrated limited infection with viral RNA shed in nasal and oral swabs primarily at 1-day post challenge (DPC), and also detected in the respiratory tract and lymphoid tissues at 4 and 8 DPC. Sero-reactivity was also observed in some of the principal infected sheep but not the contact sentinels, indicating that transmission to co-mingled naive sheep was not highly efficient; hovewer, viral RNA was detected in some of the respiratory tract tissues of sentinel animals at 21 DPC. Furthermore, we used challenge inoculum consisting of a mixture of two SARS-CoV-2 isolates, representatives of the ancestral lineage A and the B.1.1.7-like alpha variant of concern (VOC), to study competition of the two virus strains. Our results indicate that sheep show low susceptibility to SARS-CoV-2 infection, and that the alpha VOC outcompeted the ancestral lineage A strain.


Mutations in SARS-CoV-2 variants of concern link to increased spike cleavage and virus transmission.

  • Alba Escalera‎ et al.
  • Cell host & microbe‎
  • 2022‎

SARS-CoV-2 lineages have diverged into highly prevalent variants termed "variants of concern" (VOCs). Here, we characterized emerging SARS-CoV-2 spike polymorphisms in vitro and in vivo to understand their impact on transmissibility and virus pathogenicity and fitness. We demonstrate that the substitution S:655Y, represented in the gamma and omicron VOCs, enhances viral replication and spike protein cleavage. The S:655Y substitution was transmitted more efficiently than its ancestor S:655H in the hamster infection model and was able to outcompete S:655H in the hamster model and in a human primary airway system. Finally, we analyzed a set of emerging SARS-CoV-2 variants to investigate how different sets of mutations may impact spike processing. All VOCs tested exhibited increased spike cleavage and fusogenic capacity. Taken together, our study demonstrates that the spike mutations present in VOCs that become epidemiologically prevalent in humans are linked to an increase in spike processing and virus transmission.


Infection and transmission of ancestral SARS-CoV-2 and its alpha variant in pregnant white-tailed deer.

  • Konner Cool‎ et al.
  • bioRxiv : the preprint server for biology‎
  • 2021‎

SARS-CoV-2, a novel Betacoronavirus, was first reported circulating in human populations in December 2019 and has since become a global pandemic. Recent history involving SARS-like coronavirus outbreaks (SARS-CoV and MERS-CoV) have demonstrated the significant role of intermediate and reservoir hosts in viral maintenance and transmission cycles. Evidence of SARS-CoV-2 natural infection and experimental infections of a wide variety of animal species has been demonstrated, and in silico and in vitro studies have indicated that deer are susceptible to SARS-CoV-2 infection. White-tailed deer (Odocoileus virginianus) are amongst the most abundant, densely populated, and geographically widespread wild ruminant species in the United States. Human interaction with white-tailed deer has resulted in the occurrence of disease in human populations in the past. Recently, white-tailed deer fawns were shown to be susceptible to SARS-CoV-2. In the present study, we investigated the susceptibility and transmission of SARS-CoV-2 in adult white-tailed deer. In addition, we examined the competition of two SARS-CoV-2 isolates, representatives of the ancestral lineage A (SARS-CoV-2/human/USA/WA1/2020) and the alpha variant of concern (VOC) B.1.1.7 (SARS-CoV-2/human/USA/CA_CDC_5574/2020), through co-infection of white-tailed deer. Next-generation sequencing was used to determine the presence and transmission of each strain in the co-infected and contact sentinel animals. Our results demonstrate that adult white-tailed deer are highly susceptible to SARS-CoV-2 infection and can transmit the virus through direct contact as well as vertically from doe to fetus. Additionally, we determined that the alpha VOC B.1.1.7 isolate of SARS-CoV-2 outcompetes the ancestral lineage A isolate in white-tailed deer, as demonstrated by the genome of the virus shed from nasal and oral cavities from principal infected and contact animals, and from virus present in tissues of principal infected deer, fetuses and contact animals.


Susceptibility of Midge and Mosquito Vectors to SARS-CoV-2.

  • Velmurugan Balaraman‎ et al.
  • Journal of medical entomology‎
  • 2021‎

SARS-CoV-2 is a recently emerged, highly contagious virus and the cause of the current COVID-19 pandemic. It is a zoonotic virus, although its animal origin is not clear yet. Person-to-person transmission occurs by inhalation of infected droplets and aerosols, or by direct contact with contaminated fomites. Arthropods transmit numerous viral, parasitic, and bacterial diseases; however, the potential role of arthropods in SARS-CoV-2 transmission is not fully understood. Thus far, a few studies have demonstrated that SARS-CoV-2 replication is not supported in cells from certain insect species nor in certain species of mosquitoes after intrathoracic inoculation. In this study, we expanded the work of SARS-CoV-2 susceptibility to biting insects after ingesting a SARS-CoV-2-infected bloodmeal. Species tested included Culicoides sonorensis (Wirth & Jones) (Diptera: Ceratopogonidae) biting midges, as well as Culex tarsalis (Coquillett) and Culex quinquefasciatus (Say) mosquitoes (Diptera: Culicidae), all known biological vectors for numerous RNA viruses. Arthropods were allowed to feed on SARS-CoV-2-spiked blood and at a time point postinfection analyzed for the presence of viral RNA and infectious virus. Additionally, cell lines derived from C. sonorensis (W8a), Aedes aegypti (Linnaeus) (Diptera: Culicidae) (C6/36), Cx. quinquefasciatus (HSU), and Cx. tarsalis (CxTrR2) were tested for SARS-CoV-2 susceptibility. Our results indicate that none of the biting insects, nor the insect cell lines evaluated support SARS-CoV-2 replication, suggesting that these species are unable to be biological vectors of SARS-CoV-2.


Identification of Host Factors for Rift Valley Fever Phlebovirus.

  • Velmurugan Balaraman‎ et al.
  • Viruses‎
  • 2023‎

Rift Valley fever phlebovirus (RVFV) is a zoonotic pathogen that causes Rift Valley fever (RVF) in livestock and humans. Currently, there is no licensed human vaccine or antiviral drug to control RVF. Although multiple species of animals and humans are vulnerable to RVFV infection, host factors affecting susceptibility are not well understood. To identify the host factors or genes essential for RVFV replication, we conducted CRISPR-Cas9 knockout screening in human A549 cells. We then validated the putative genes using siRNA-mediated knock-downs and CRISPR-Cas9-mediated knock-out studies. The role of a candidate gene in the virus replication cycle was assessed by measuring intracellular viral RNA accumulation, and the virus titers were analyzed using plaque assay or TCID50 assay. We identified approximately 900 genes with potential involvement in RVFV infection and replication. Further evaluation of the effect of six genes on viral replication using siRNA-mediated knock-downs revealed that silencing two genes (WDR7 and LRP1) significantly impaired RVFV replication. For further analysis, we focused on the WDR7 gene since the role of the LRP1 gene in RVFV replication was previously described in detail. WDR7 knockout A549 cell lines were generated and used to dissect the effect of WRD7 on a bunyavirus, RVFV, and an orthobunyavirus, La Crosse encephalitis virus (LACV). We observed significant effects of WDR7 knockout cells on both intracellular RVFV RNA levels and viral titers. At the intracellular RNA level, WRD7 affected RVFV replication at a later phase of its replication cycle (24 h) when compared with the LACV replication, which was affected in an earlier replication phase (12 h). In summary, we identified WDR7 as an essential host factor for the replication of two different viruses, RVFV and LACV, both of which belong to the Bunyavirales order. Future studies will investigate the mechanistic role through which WDR7 facilitates phlebovirus replication.


Preliminary Study on the Efficacy of a Recombinant, Subunit SARS-CoV-2 Animal Vaccine against Virulent SARS-CoV-2 Challenge in Cats.

  • Igor Morozov‎ et al.
  • Vaccines‎
  • 2023‎

The objective of this work was to evaluate the safety and efficacy of a recombinant, subunit SARS-CoV-2 animal vaccine in cats against virulent SARS-CoV-2 challenge. Two groups of cats were immunized with two doses of either a recombinant SARS-CoV-2 spike protein vaccine or a placebo, administered three weeks apart. Seven weeks after the second vaccination, both groups of cats were challenged with SARS-CoV-2 via the intranasal and oral routes simultaneously. Animals were monitored for 14 days post-infection for clinical signs and viral shedding before being humanely euthanized and evaluated for macroscopic and microscopic lesions. The recombinant SARS-CoV-2 spike protein subunit vaccine induced strong serologic responses post-vaccination and significantly increased neutralizing antibody responses post-challenge. A significant difference in nasal and oral viral shedding, with significantly reduced virus load (detected using RT-qPCR) was observed in vaccinates compared to mock-vaccinated controls. Duration of nasal, oral, and rectal viral shedding was also significantly reduced in vaccinates compared to controls. No differences in histopathological lesion scores were noted between the two groups. Our findings support the safety and efficacy of the recombinant spike protein-based SARS-CoV-2 vaccine which induced high levels of neutralizing antibodies and reduced nasal, oral, and rectal viral shedding, indicating that this vaccine will be efficacious as a COVID-19 vaccine for domestic cats.


Antiviral Hammerhead Ribozymes Are Effective for Developing Transgenic Suppression of Chikungunya Virus in Aedes aegypti Mosquitoes.

  • Priya Mishra‎ et al.
  • Viruses‎
  • 2016‎

The chikungunya virus (CHIKV) is an emerging pathogen with widespread distribution in regions of Africa, India, and Asia that threatens to spread into temperate climates with the introduction of its major vector, Aedes albopictus. CHIKV causes a disease frequently misdiagnosed as dengue fever, with potentially life-threatening symptoms that can result in a longer-term debilitating arthritis. The increasing risk of spread from endemic regions via human travel and commerce and the current absence of a vaccine put a significant proportion of the world population at risk for this disease. In this study we designed and tested hammerhead ribozymes (hRzs) targeting CHIKV structural protein genes of the RNA genome as potential antivirals both at the cellular and in vivo level. We employed the CHIKV strain 181/25, which exhibits similar infectivity rates in both Vero cell cultures and mosquitoes. Virus suppression assay performed on transformed Vero cell clones of all seven hRzs demonstrated that all are effective at inhibiting CHIKV in Vero cells, with hRz #9 and #14 being the most effective. piggyBac transformation vectors were constructed using the Ae. aegypti t-RNA(val) Pol III promoted hRz #9 and #14 effector genes to establish a total of nine unique transgenic Higgs White Eye (HWE) Ae. aegypti lines. Following confirmation of transgene expression by real-time polymerase chain reaction (RT-PCR), comparative TCID50-IFA analysis, in situ Immuno-fluorescent Assays (IFA) and analysis of salivary CHIKV titers demonstrated effective suppression of virus replication at 7 dpi in heterozygous females of each of these transgenic lines compared with control HWE mosquitoes. This report provides a proof that appropriately engineered hRzs are powerful antiviral effector genes suitable for population replacement strategies.


Susceptibility of swine cells and domestic pigs to SARS-CoV-2.

  • David A Meekins‎ et al.
  • Emerging microbes & infections‎
  • 2020‎

The emergence of SARS-CoV-2 has resulted in an ongoing global pandemic with significant morbidity, mortality, and economic consequences. The susceptibility of different animal species to SARS-CoV-2 is of concern due to the potential for interspecies transmission, and the requirement for pre-clinical animal models to develop effective countermeasures. In the current study, we determined the ability of SARS-CoV-2 to (i) replicate in porcine cell lines, (ii) establish infection in domestic pigs via experimental oral/intranasal/intratracheal inoculation, and (iii) transmit to co-housed naïve sentinel pigs. SARS-CoV-2 was able to replicate in two different porcine cell lines with cytopathic effects. Interestingly, none of the SARS-CoV-2-inoculated pigs showed evidence of clinical signs, viral replication or SARS-CoV-2-specific antibody responses. Moreover, none of the sentinel pigs displayed markers of SARS-CoV-2 infection. These data indicate that although different porcine cell lines are permissive to SARS-CoV-2, five-week old pigs are not susceptible to infection via oral/intranasal/intratracheal challenge. Pigs are therefore unlikely to be significant carriers of SARS-CoV-2 and are not a suitable pre-clinical animal model to study SARS-CoV-2 pathogenesis or efficacy of respective vaccines or therapeutics.


Susceptibility of sheep to experimental co-infection with the ancestral lineage of SARS-CoV-2 and its alpha variant.

  • Natasha N Gaudreault‎ et al.
  • Emerging microbes & infections‎
  • 2022‎

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is responsible for a global pandemic that has had significant impacts on human health and economies worldwide. SARS-CoV-2 is highly transmissible and the cause of coronavirus disease 2019 in humans. A wide range of animal species have also been shown to be susceptible to SARS-CoV-2 by experimental and/or natural infections. Sheep are a commonly farmed domestic ruminant that have not been thoroughly investigated for their susceptibility to SARS-CoV-2. Therefore, we performed in vitro and in vivo studies which consisted of infection of ruminant-derived cells and experimental challenge of sheep to investigate their susceptibility to SARS-CoV-2. Our results showed that sheep-derived kidney cells support SARS-CoV-2 replication. Furthermore, the experimental challenge of sheep demonstrated limited infection with viral RNA shed in nasal and oral swabs at 1 and 3-days post challenge (DPC); viral RNA was also detected in the respiratory tract and lymphoid tissues at 4 and 8 DPC. Sero-reactivity was observed in some of the principal infected sheep but not the contact sentinels, indicating that transmission to co-mingled naïve sheep was not highly efficient; however, viral RNA was detected in respiratory tract tissues of sentinel animals at 21 DPC. Furthermore, we used a challenge inoculum consisting of a mixture of two SARS-CoV-2 isolates, representatives of the ancestral lineage A and the B.1.1.7-like alpha variant of concern, to study competition of the two virus strains. Our results indicate that sheep show low susceptibility to SARS-CoV-2 infection and that the alpha variant outcompeted the lineage A strain.


Evaluating α-galactosylceramide as an adjuvant for live attenuated influenza vaccines in pigs.

  • Bianca L Artiaga‎ et al.
  • Animal diseases‎
  • 2022‎

Natural killer T (NKT) cells activated with the glycolipid ligand α-galactosylceramide (α-GalCer) stimulate a wide variety of immune cells that enhance vaccine-mediated immune responses. Several studies have used this approach to adjuvant inactivated and subunit influenza A virus (IAV) vaccines, including to enhance cross-protective influenza immunity. However, less is known about whether α-GalCer can enhance live attenuated influenza virus (LAIV) vaccines, which usually induce superior heterologous and heterosubtypic immunity compared to non-replicating influenza vaccines. The current study used the swine influenza challenge model to assess whether α-GalCer can enhance cross-protective immune responses elicited by a recombinant H3N2 LAIV vaccine (TX98ΔNS1) encoding a truncated NS1 protein. In one study, weaning pigs were administered the H3N2 TX98ΔNS1 LAIV vaccine with 0, 10, 50, and 100 μg/kg doses of α-GalCer, and subsequently challenged with a heterologous H3N2 virus. All treatment groups were protected from infection. However, the addition of α-GalCer appeared to suppress nasal shedding of the LAIV vaccine. In another experiment, pigs vaccinated with the H3N2 LAIV, with or without 50 μg/kg of α-GalCer, were challenged with the heterosubtypic pandemic H1N1 virus. Pigs vaccinated with the LAIV alone generated cross-reactive humoral and cellular responses which blocked virus replication in the airways, and significantly decreased virus shedding. On the other hand, combining the vaccine with α-GalCer reduced cross-protective cellular and antibody responses, and resulted in higher virus titers in respiratory tissues. These findings suggest that: (i) high doses of α-GalCer impair the replication and nasal shedding of the LAIV vaccine; and (ii) α-GalCer might interfere with heterosubtypic cross-protective immune responses. This research raise concerns that should be considered before trying to use NKT cell agonists as a possible adjuvant approach for LAIV vaccines.


African and Asian strains of Zika virus differ in their ability to infect and lyse primitive human placental trophoblast.

  • Megan A Sheridan‎ et al.
  • PloS one‎
  • 2018‎

Zika virus (ZIKV) drew worldwide attention when a recent epidemic was linked to fetal microcephaly. Here we used human embryonic stem cell derived trophoblasts as a model for primitive placental trophoblast to test the hypothesis that there are differences in how the two genetically distinct ZIKV lineages, African (AF) and Asian (AS), target the human placenta. Upon infection with three AF (ib-H30656, SEN/1984/41525-DAK, and MR-766) and three AS (FSS13025, MexI-44, and PANcdc259249) ZIKV strains, we observed that severe placental cell lysis was only induced after infection with AF strains, while viral replication rates remained similar between both lineages. Differences in cytopathic effects (CPE) were not observed in Vero cells, indicating that the AF strains were not inherently superior at cell lysis. Taken together, we propose that infection with AF strains of ZIKV early in pregnancy would likely result in pregnancy loss, rather than allow further fetal development with accompanying brain damage. Our results also suggest that the long term laboratory-adapted MR-766 strain does not behave aberrantly in cell culture relative to other AF lineage strains.


Chikungunya virus dissemination from the midgut of Aedes aegypti is associated with temporal basal lamina degradation during bloodmeal digestion.

  • Shengzhang Dong‎ et al.
  • PLoS neglected tropical diseases‎
  • 2017‎

In the mosquito, the midgut epithelium is the initial tissue to become infected with an arthropod-borne virus (arbovirus) that has been acquired from a vertebrate host along with a viremic bloodmeal. Following its replication in midgut epithelial cells, the virus needs to exit the midgut and infect secondary tissues including the salivary glands before it can be transmitted to another vertebrate host. The viral exit mechanism from the midgut, the midgut escape barrier (MEB), is poorly understood although it is an important determinant of mosquito vector competence for arboviruses. Using chikungunya virus (CHIKV) as a model in Aedes aegypti, we demonstrate that the basal lamina (BL) of the extracellular matrix (ECM) surrounding the midgut constitutes a potential barrier for the virus. The BL, predominantly consisting of collagen IV and laminin, becomes permissive during bloodmeal digestion in the midgut lumen. Bloodmeal digestion, BL permissiveness, and CHIKV dissemination are coincident with increased collagenase activity, diminished collagen IV abundance, and BL shredding in the midgut between 24-32 h post-bloodmeal. This indicates that there may be a window-of-opportunity during which the MEB in Ae. aegypti becomes permissive for CHIKV. Matrix metalloproteinases (MMPs) are the principal extracellular endopeptidases responsible for the degradation/remodeling of the ECM including the BL. We focused on Ae. aegypti (Ae)MMP1, which is expressed in midgut epithelial cells, is inducible upon bloodfeeding, and shows collagenase (gelatinase) activity. However, attempts to inhibit AeMMP activity in general or specifically that of AeMMP1 did not seem to affect its function nor produce an altered midgut escape phenotype. As an alternative, we silenced and overexpressed the Ae. aegypti tissue inhibitor of metalloproteinases (AeTIMP) in the mosquito midgut. AeTIMP was highly upregulated in the midgut during bloodmeal digestion and was able to inhibit MMP activity in vitro. Bloodmeal-inducible, midgut-specific overexpression of AeTIMP or its expression via a recombinant CHIKV significantly increased midgut dissemination rates of the virus. Possibly, AeTIMP overexpression affected BL degradation and/or restoration thereby increasing the midgut dissemination efficiency of the virus.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: