Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 3 papers out of 3 papers

Hemodynamic effects of high frequency oscillatory ventilation with volume guarantee in a piglet model of respiratory distress syndrome.

  • Jagmeet Bhogal‎ et al.
  • PloS one‎
  • 2021‎

Respiratory failure is a common condition faced by critically ill neonates with respiratory distress syndrome (RDS). High frequency oscillatory ventilation (HFOV) is often used for neonates with refractory respiratory failure related to RDS. Volume guarantee (VG) mode has been added to some HFOV ventilators for providing consistent tidal volume. We sought to examine the impact of adding the VG mode during HFOV on systemic and cerebral hemodynamics, which has not been studied to date. A neonatal piglet model of moderate to severe RDS was induced by saline lavage. Piglets (full term, age 1-3 days, weight 1.5-2.4 kg) were randomized to have RDS induced and receive either HFOV or HFOV+VG (n = 8/group) or sham-operation (n = 6) without RDS. Cardiac function measured by a Millar® catheter placed in the left ventricle as well as systemic and carotid hemodynamic and oxygen tissue saturation parameters were collected over 240 min of ventilation. Mean airway pressure, alveolar-arterial oxygen difference and left ventricular cardiac index of piglets on HFOV vs. HFOV+VG were not significantly different during the experimental period. Right common carotid artery flow index by in-situ ultrasonic flow measurement and cerebral tissue oxygen saturation (near-infrared spectroscopy) significantly decreased in HFOV+VG at 240 min compared to HFOV (14 vs. 31 ml/kg/min, and 30% vs. 43%, respectively; p<0.05). There were no significant differences in lung, brain and heart tissue markers of oxidative stress, ischemia and inflammation. HFOV+VG compared to HFOV was associated with similar left ventricular function, however HFOV+VG had a negative effect on cerebral blood flow and oxygenation.


Return of spontaneous Circulation Is Not Affected by Different Chest Compression Rates Superimposed with Sustained Inflations during Cardiopulmonary Resuscitation in Newborn Piglets.

  • Elliott S Li‎ et al.
  • PloS one‎
  • 2016‎

Recently, sustained inflations (SI) during chest compression (CC) have been suggested as an alternative to the current approach during neonatal resuscitation. However, the optimal rate of CC during SI has not yet been established. Our aim was to determine whether different CC rates during SI reduce time to return of spontaneous circulation (ROSC) and improve hemodynamic recovery in newborn piglets with asphyxia-induced bradycardia.


Effects of sustained inflation pressure during neonatal cardiopulmonary resuscitation of asphyxiated piglets.

  • Gyu-Hong Shim‎ et al.
  • PloS one‎
  • 2020‎

Sustained inflation (SI) during chest compression (CC = CC+SI) has been recently shown as an alternative method during cardiopulmonary resuscitation in neonates. However, the optimal peak inflation pressure (PIP) of SI during CC+SI to improve ROSC and hemodynamic recovery is unknown.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: