Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 42 papers

Methylmercury induces the expression of chemokine CCL4 via SRF activation in C17.2 mouse neural stem cells.

  • Min-Seok Kim‎ et al.
  • Scientific reports‎
  • 2019‎

Methylmercury is an environmental pollutant that causes specific and serious damage to the central nervous system. We have previously shown that C-C motif chemokine ligand 4 (CCL4) protects cultured neural cells from methylmercury toxicity and expression of CCL4 is specifically induced in mouse brain by methylmercury. In this study, we examined the transcriptional regulatory mechanism that induces CCL4 expression by methylmercury using C17.2 mouse neural stem cells. The promoter region of the CCL4 gene was analyzed by a reporter assay, revealing that the region up to 50 bp upstream from the transcription start site was necessary for inducing expression of CCL4 by methylmercury. Nine transcription factors that might bind to this upstream region and be involved in the induction of CCL4 expression by methylmercury were selected, and the induction of CCL4 expression by methylmercury was suppressed by the knockdown of serum response factor (SRF). In addition, the nuclear level of SRF was elevated by methylmercury, and an increase in the amount bound to the CCL4 gene promoter was also observed. Furthermore, we examined the upstream signaling pathway involved in the induction of CCL4 expression by SRF, and confirmed that activation of p38 and ERK, which are part of the MAPK pathway, are involved. These results suggest that methylmercury induces the expression of CCL4 by activating SRF via the p38 and ERK signaling pathway. Our findings are important for elucidating the mechanism involved in the brain-specific induction of CCL4 expression by methylmercury.


Classification of first-episode schizophrenia patients and healthy subjects by automated MRI measures of regional brain volume and cortical thickness.

  • Yoichiro Takayanagi‎ et al.
  • PloS one‎
  • 2011‎

Although structural magnetic resonance imaging (MRI) studies have repeatedly demonstrated regional brain structural abnormalities in patients with schizophrenia, relatively few MRI-based studies have attempted to distinguish between patients with first-episode schizophrenia and healthy controls.


The useful preliminary diagnosis of Niemann-Pick disease type C by filipin test in blood smear.

  • Ayumi Takamura‎ et al.
  • Molecular genetics and metabolism‎
  • 2013‎

Niemann-Pick disease type C (NP-C) is an autosomal recessive lysosomal lipid storage disorder characterized with accumulation of cholesterol in endosomes and lysosomes. The diagnosis of NP-C is difficult due to its heterogeneous group of diseases. Biochemical diagnosis of NP-C is conducted by cholesterol staining with cultured skin fibroblasts and confirmed by the analysis of genetic mutations of NPC1 or NPC2 gene. Here, we report an easier biochemical diagnostic method with blood smear by filipin staining.


Longitudinal Changes in Brain Gyrification in Schizophrenia Spectrum Disorders.

  • Tien Viet Pham‎ et al.
  • Frontiers in aging neuroscience‎
  • 2021‎

Previous magnetic resonance imaging (MRI) studies reported increased brain gyrification in schizophrenia and schizotypal disorder, a prototypic disorder within the schizophrenia spectrum. This may reflect deviations in early neurodevelopment; however, it currently remains unclear whether the gyrification pattern longitudinally changes over the course of the schizophrenia spectrum. The present MRI study using FreeSurfer compared longitudinal changes (mean inter-scan interval of 2.7 years) in the local gyrification index (LGI) in the entire cortex among 23 patients with first-episode schizophrenia, 14 with schizotypal disorder, and 39 healthy controls. Significant differences were observed in longitudinal LGI changes between these groups; the schizophrenia group exhibited a progressive decline in LGI, predominantly in the fronto-temporal regions, whereas LGI increased over time in several brain regions in the schizotypal and control groups. In the schizophrenia group, a greater reduction in LGI over time in the right precentral and post central regions correlated with smaller improvements in negative symptoms during the follow-up period. The cumulative medication dosage during follow-up negatively correlated with a longitudinal LGI increase in the right superior parietal area in the schizotypal group, but did not affect longitudinal LGI changes in the schizophrenia group. Collectively, these results suggest that gyrification patterns in the schizophrenia spectrum reflect both early neurodevelopmental abnormalities as a vulnerability factor and active brain pathology in the early stages of schizophrenia.


Structural MRI Study of the Planum Temporale in Individuals With an At-Risk Mental State Using Labeled Cortical Distance Mapping.

  • Yoichiro Takayanagi‎ et al.
  • Frontiers in psychiatry‎
  • 2020‎

Background: Recent studies have demonstrated brain structural changes that predate or accompany the onset of frank psychosis, such as schizophrenia, among individuals with an at-risk mental state (ARMS). The planum temporale (PT) is a brain region involved in language processing. In schizophrenia patients, gray matter volume reduction and lack of normal asymmetry (left > right) of PT have repeatedly been reported. Some studies showed progressive gray matter reduction of PT in first-episode schizophrenia patients, and in ARMS subjects during their development of psychosis. Methods: MRI scans (1.5 T field strength) were obtained from 73 ARMS subjects and 74 gender- and age-matched healthy controls at three sites (University of Toyama, Toho University and Tohoku University). Participants with ARMS were clinically monitored for at least 2 years to confirm whether they subsequently developed frank psychosis. Cortical thickness, gray matter volume, and surface area of PT were estimated using FreeSurfer-initiated labeled cortical distance mapping (FSLCDM). PT measures were compared among healthy controls, ARMS subjects who later developed overt psychosis (ARMS-P), and those who did not (ARMS-NP). In each statistical model, age, sex, intracranial volume, and scanning sites were treated as nuisance covariates. Results: Of 73 ARMS subjects, 18 developed overt psychosis (12 schizophrenia and 6 other psychoses) within the follow-up period. There were no significant group differences of PT measures. In addition, significant asymmetries of PT volume and surface area (left > right) were found in all diagnostic groups. PT measures did not correlate with the neurocognitive performance of ARMS subjects. Discussion: Our results suggest that the previously-reported gray matter reduction and lack of normal anatomical asymmetry of PT in schizophrenia patients may not emerge during the prodromal stage of psychosis; taken together with previous longitudinal findings, such PT structural changes may occur just before or during the onset of psychosis.


Reduced cortical thickness of the paracentral lobule in at-risk mental state individuals with poor 1-year functional outcomes.

  • Daiki Sasabayashi‎ et al.
  • Translational psychiatry‎
  • 2021‎

Although widespread cortical thinning centered on the fronto-temporal regions in schizophrenia has been reported, the findings in at-risk mental state (ARMS) patients have been inconsistent. In addition, it remains unclear whether abnormalities of cortical thickness (CT) in ARMS individuals, if present, are related to their functional decline irrespective of future psychosis onset. In this multicenter study in Japan, T1-weighted magnetic resonance imaging was performed at baseline in 107 individuals with ARMS, who were subdivided into resilient (77, good functional outcome) and non-resilient (13, poor functional outcome) groups based on the change in Global Assessment of Functioning scores during 1-year follow-up, and 104 age- and sex-matched healthy controls recruited at four scanning sites. We measured the CT of the entire cortex and performed group comparisons using FreeSurfer software. The relationship between the CT and cognitive functioning was examined in an ARMS subsample (n = 70). ARMS individuals as a whole relative to healthy controls exhibited a significantly reduced CT, predominantly in the fronto-temporal regions, which was partly associated with cognitive impairments, and an increased CT in the left parietal and right occipital regions. Compared with resilient ARMS individuals, non-resilient ARMS individuals exhibited a significantly reduced CT of the right paracentral lobule. These findings suggest that ARMS individuals partly share CT abnormalities with patients with overt schizophrenia, potentially representing general vulnerability to psychopathology, and also support the role of cortical thinning in the paracentral lobule as a predictive biomarker for short-term functional decline in the ARMS population.


White matter microstructural alterations across four major psychiatric disorders: mega-analysis study in 2937 individuals.

  • Daisuke Koshiyama‎ et al.
  • Molecular psychiatry‎
  • 2020‎

Identifying both the commonalities and differences in brain structures among psychiatric disorders is important for understanding the pathophysiology. Recently, the ENIGMA-Schizophrenia DTI Working Group performed a large-scale meta-analysis and reported widespread white matter microstructural alterations in schizophrenia; however, no similar cross-disorder study has been carried out to date. Here, we conducted mega-analyses comparing white matter microstructural differences between healthy comparison subjects (HCS; N = 1506) and patients with schizophrenia (N = 696), bipolar disorder (N = 211), autism spectrum disorder (N = 126), or major depressive disorder (N = 398; total N = 2937 from 12 sites). In comparison with HCS, we found that schizophrenia, bipolar disorder, and autism spectrum disorder share similar white matter microstructural differences in the body of the corpus callosum; schizophrenia and bipolar disorder featured comparable changes in the limbic system, such as the fornix and cingulum. By comparison, alterations in tracts connecting neocortical areas, such as the uncinate fasciculus, were observed only in schizophrenia. No significant difference was found in major depressive disorder. In a direct comparison between schizophrenia and bipolar disorder, there were no significant differences. Significant differences between schizophrenia/bipolar disorder and major depressive disorder were found in the limbic system, which were similar to the differences in schizophrenia and bipolar disorder relative to HCS. While schizophrenia and bipolar disorder may have similar pathological characteristics, the biological characteristics of major depressive disorder may be close to those of HCS. Our findings provide insights into nosology and encourage further investigations of shared and unique pathophysiology of psychiatric disorders.


The polymorphism of YWHAE, a gene encoding 14-3-3epsilon, and brain morphology in schizophrenia: a voxel-based morphometric study.

  • Mikio Kido‎ et al.
  • PloS one‎
  • 2014‎

YWHAE is a possible susceptibility gene for schizophrenia that encodes 14-3-3epsilon, a Disrupted-in-Schizophrenia 1 (DISC1)-interacting molecule, but the effect of variation in its genotype on brain morphology remains largely unknown.


Diagnostic specificity of the insular cortex abnormalities in first-episode psychotic disorders.

  • Tsutomu Takahashi‎ et al.
  • Progress in neuro-psychopharmacology & biological psychiatry‎
  • 2009‎

Volume reductions of the insular cortex have been described in schizophrenia, but it remains unclear whether other psychotic disorders such as affective psychosis also exhibit insular cortex abnormalities. In this study, we used magnetic resonance imaging to investigate the gray matter volume of the anterior (short) and posterior (long) insular cortices in 162 first-episode patients with various psychotic disorders (46 schizophrenia, 57 schizophreniform disorder, 34 affective psychosis, and 25 other psychoses) and 62 age- and gender-matched healthy comparison subjects. Patients with schizophrenia showed bilateral volume reduction of the anterior and posterior insular cortices compared with controls, but the remaining first-episode psychosis subgroups had normal insular volumes. The volumes of these insular subregions were significantly smaller in schizophrenia patients than in patients with schizophreniform disorder or affective psychoses. There was no association between the insular cortex volume and daily dosage or type of antipsychotic medication in any patient group. These findings suggest that the widespread volume reduction of the insular cortex is specific to established schizophrenia, implicating its role in the neurobiology of clinical characteristics associated with schizophrenia.


Induction of chemokine CCL3 by NF-κB reduces methylmercury toxicity in C17.2 mouse neural stem cells.

  • Tsutomu Takahashi‎ et al.
  • Environmental toxicology and pharmacology‎
  • 2019‎

Methylmercury is an environmental pollutant that shows selective toxicity to the central nervous system. We previously reported that brain-specific expression of chemokine CCL3 increases in mice administered methylmercury. However, the relationship between CCL3 and methylmercury toxicity has not been elucidated. Here, we confirmed that induction of CCL3 expression occurs before pathological change by methylmercury treatment was observed in the mouse brain. This induction was also observed in C17.2 mouse neural stem cells before methylmercury-induced cytotoxicity. In addition, cells in which CCL3 was knocked-down showed higher methylmercury sensitivity than did control cells. Moreover, activation of transcription factor NF-κB was observed following methylmercury treatment, and methylmercury-mediated induction of CCL3 expression was partially suppressed by knockdown of p65, an NF-κB subunit. Our results suggest that NF-κB plays a role in the induction of methylmercury-mediated CCL3 expression and that this action may be a cellular response to methylmercury toxicity.


Familial episodic limb pain in kindreds with novel Nav1.9 mutations.

  • Risako Kabata‎ et al.
  • PloS one‎
  • 2018‎

We previously performed genetic analysis in six unrelated families with infantile limb pain episodes, characterized by cold-induced deterioration and mitigation in adolescence, and reported two new mutations p.R222H/S in SCN11A responsible for these episodes. As no term described this syndrome (familial episodic pain: FEP) in Japanese, we named it as"". In the current study, we recruited an additional 42 new unrelated Japanese FEP families, between March 2016 and March 2018, and identified a total of 11 mutations in SCN11A: p.R222H in seven families, and p.R225C, p.F814C, p.F1146S, or p.V1184A, in independent families. A founder mutation, SCN11A p.R222H was confirmed to be frequently observed in patients with FEP in the Tohoku region of Japan. We also identified two novel missense variants of SCN11A, p.F814C and p.F1146S. To evaluate the effects of these latter two mutations, we generated knock-in mouse models harboring p.F802C (F802C) and p.F1125S (F1125S), orthologues of the human p.F814C and p.F1146S, respectively. We then performed electrophysiological investigations using dorsal root ganglion neurons dissected from the 6-8 week-old mice. Dissected neurons of F802C and F1125S mice showed increased resting membrane potentials and firing frequency of the action potentials (APs) by high input-current stimulus compared with WT mice. Furthermore, the firing probability of evoked APs increased in low stimulus input in F1125S mice, whereas several AP parameters and current threshold did not differ significantly between either of the mutations and WT mice. These results suggest a higher level of excitability in the F802C or F1125S mice than in WT, and indicate that these novel mutations are gain of function mutations. It can be expected that a considerable number of potential patients with FEP may be the result of gain of function SCN11A mutations.


The Nuclear Protein HOXB13 Enhances Methylmercury Toxicity by Inducing Oncostatin M and Promoting Its Binding to TNFR3 in Cultured Cells.

  • Takashi Toyama‎ et al.
  • Cells‎
  • 2019‎

Homeobox protein B13 (HOXB13), a transcription factor, is related to methylmercury toxicity; however, the downstream factors involved in enhancing methylmercury toxicity remain unknown. We performed microarray analysis to search for downstream factors whose expression is induced by methylmercury via HOXB13 in human embryonic kidney cells (HEK293), which are useful model cells for analyzing molecular mechanisms. Methylmercury induced the expression of oncostatin M (OSM), a cytokine of the interleukin-6 family, and this was markedly suppressed by HOXB13 knockdown. OSM knockdown also conferred resistance to methylmercury in HEK293 cells, and no added methylmercury resistance was observed when both HOXB13 and OSM were knocked down. Binding of HOXB13 to the OSM gene promoter was increased by methylmercury, indicating the involvement of HOXB13 in the enhancement of its toxicity. Because addition of recombinant OSM to the medium enhanced methylmercury toxicity in OSM-knockdown cells, extracellularly released OSM was believed to enhance methylmercury toxicity via membrane receptors. We discovered tumor necrosis factor receptor (TNF) receptor 3 (TNFR3) to be a potential candidate involved in the enhancement of methylmercury toxicity by OSM. This toxicity mechanism was also confirmed in mouse neuronal stem cells. We report, for the first time, that HOXB13 is involved in enhancement of methylmercury toxicity via OSM-expression induction and that the synthesized OSM causes cell death by binding to TNFR3 extracellularly.


Novel Photosensitizer β-Mannose-Conjugated Chlorin e6 as a Potent Anticancer Agent for Human Glioblastoma U251 Cells.

  • Yo Shinoda‎ et al.
  • Pharmaceuticals (Basel, Switzerland)‎
  • 2020‎

A photosensitizer is a molecular drug for photodynamic diagnosis and photodynamic therapy (PDT) against cancer. Many studies have developed photosensitizers, but improvements in their cost, efficacy, and side effects are needed for better PDT of patients. In the present study, we developed a novel photosensitizer β-mannose-conjugated chlorin e6 (β-M-Ce6) and investigated its PDT effects in human glioblastoma U251 cells. U251 cells were incubated with β-M-Ce6, followed by laser irradiation. Cell viability was determined using the Cell Counting Kit-8 assay. The PDT effects of β-M-Ce6 were compared with those of talaporfin sodium (TS) and our previously reported photosensitizer β-glucose-conjugated chlorin e6 (β-G-Ce6). Cellular uptake of each photosensitizer and subcellular distribution were analyzed by fluorescence microscopy. β-M-Ce6 showed 1000× more potent PDT effects than those of TS, and these were similar to those of β-G-Ce6. β-M-Ce6 accumulation in U251 cells was much faster than TS accumulation and distributed to several organelles such as the Golgi apparatus, mitochondria, and lysosomes. This rapid cellular uptake was inhibited by low temperature, which suggested that β-M-Ce6 uptake uses biological machinery. β-M-Ce6 showed potent PDT anti-cancer effects compared with clinically approved TS, which is a possible candidate as a next generation photosensitizer in cancer therapy.


Rare genetic variants in the gene encoding histone lysine demethylase 4C (KDM4C) and their contributions to susceptibility to schizophrenia and autism spectrum disorder.

  • Hidekazu Kato‎ et al.
  • Translational psychiatry‎
  • 2020‎

Dysregulation of epigenetic processes involving histone methylation induces neurodevelopmental impairments and has been implicated in schizophrenia (SCZ) and autism spectrum disorder (ASD). Variants in the gene encoding lysine demethylase 4C (KDM4C) have been suggested to confer a risk for such disorders. However, rare genetic variants in KDM4C have not been fully evaluated, and the functional impact of the variants has not been studied using patient-derived cells. In this study, we conducted copy number variant (CNV) analysis in a Japanese sample set (2605 SCZ and 1141 ASD cases, and 2310 controls). We found evidence for significant associations between CNVs in KDM4C and SCZ (p = 0.003) and ASD (p = 0.04). We also observed a significant association between deletions in KDM4C and SCZ (corrected p = 0.04). Next, to explore the contribution of single nucleotide variants in KDM4C, we sequenced the coding exons in a second sample set (370 SCZ and 192 ASD cases) and detected 18 rare missense variants, including p.D160N within the JmjC domain of KDM4C. We, then, performed association analysis for p.D160N in a third sample set (1751 SCZ and 377 ASD cases, and 2276 controls), but did not find a statistical association with these disorders. Immunoblotting analysis using lymphoblastoid cell lines from a case with KDM4C deletion revealed reduced KDM4C protein expression and altered histone methylation patterns. In conclusion, this study strengthens the evidence for associations between KDM4C CNVs and these two disorders and for their potential functional effect on histone methylation patterns.


Normative modeling of brain morphometry in Clinical High-Risk for Psychosis.

  • Shalaila S Haas‎ et al.
  • bioRxiv : the preprint server for biology‎
  • 2023‎

The lack of robust neuroanatomical markers of psychosis risk has been traditionally attributed to heterogeneity. A complementary hypothesis is that variation in neuroanatomical measures in the majority of individuals at psychosis risk may be nested within the range observed in healthy individuals.


Recent Advances and Future Directions in Brain MR Imaging Studies in Schizophrenia: Toward Elucidating Brain Pathology and Developing Clinical Tools.

  • Shinsuke Koike‎ et al.
  • Magnetic resonance in medical sciences : MRMS : an official journal of Japan Society of Magnetic Resonance in Medicine‎
  • 2022‎

Schizophrenia is a common severe psychiatric disorder that affects approximately 1% of general population through the life course. Historically, in Kraepelin's time, schizophrenia was a disease unit conceptualized as dementia praecox; however, since then, the disease concept has changed. Recent MRI studies had shown that the neuropathology of the brain in this disorder was characterized by mild progression before and after the onset of the disease, and that the brain alterations were relatively smaller than assumed. Although genetic factors contribute to the brain alterations in schizophrenia, which are thought to be trait differences, other changes include factors that are common in psychiatric diseases. Furthermore, it has been shown that the brain differences specific to schizophrenia were relatively small compared to other changes, such as those caused by brain development, aging, and gender. In addition, compared to the disease and participant factors, machine and imaging protocol differences could affect MRI signals, which should be addressed in multi-site studies. Recent advances in MRI modalities, such as multi-shell diffusion-weighted imaging, magnetic resonance spectroscopy, and multimodal brain imaging analysis, may be candidates to sharpen the characterization of schizophrenia-specific factors and provide new insights. The Brain/MINDS Beyond Human Brain MRI (BMB-HBM) project has been launched considering the differences and noises irrespective of the disease pathologies and includes the future perspectives of MRI studies for various psychiatric and neurological disorders. The sites use restricted MRI machines and harmonized multi-modal protocols, standardized image preprocessing, and traveling subject harmonization. Data sharing to the public will be planned in FY 2024. In the future, we believe that combining a high-quality human MRI dataset with genetic data, randomized controlled trials, and MRI for non-human primates and animal models will enable us to understand schizophrenia, elucidate its neural bases and therapeutic targets, and provide tools for clinical application at bedside.


Reduced Hippocampal Subfield Volume in Schizophrenia and Clinical High-Risk State for Psychosis.

  • Daiki Sasabayashi‎ et al.
  • Frontiers in psychiatry‎
  • 2021‎

Magnetic resonance imaging (MRI) studies in schizophrenia demonstrated volume reduction in hippocampal subfields divided on the basis of specific cytoarchitecture and function. However, it remains unclear whether this abnormality exists prior to the onset of psychosis and differs across illness stages. MRI (3 T) scans were obtained from 77 patients with schizophrenia, including 24 recent-onset and 40 chronic patients, 51 individuals with an at-risk mental state (ARMS) (of whom 5 subsequently developed psychosis within the follow-up period), and 87 healthy controls. Using FreeSurfer software, hippocampal subfield volumes were measured and compared across the groups. Both schizophrenia and ARMS groups exhibited significantly smaller volumes for the bilateral Cornu Ammonis 1 area, left hippocampal tail, and right molecular layer of the hippocampus than the healthy control group. Within the schizophrenia group, chronic patients exhibited a significantly smaller volume for the left hippocampal tail than recent-onset patients. The left hippocampal tail volume was positively correlated with onset age, and negatively correlated with duration of psychosis and duration of medication in the schizophrenia group. Reduced hippocampal subfield volumes observed in both schizophrenia and ARMS groups may represent a common biotype associated with psychosis vulnerability. Volumetric changes of the left hippocampal tail may also suggest ongoing atrophy after the onset of schizophrenia.


Predictors of Survival in Patients With Ischemic Stroke and Active Cancer: A Prospective, Multicenter, Observational Study.

  • Yasufumi Gon‎ et al.
  • Journal of the American Heart Association‎
  • 2023‎

Background Limited data exist on the prognostic factors for patients with ischemic stroke and active cancer. Methods and Results We conducted a prospective, multicenter, observational study in Japan, including patients with acute ischemic stroke and active cancer, to investigate the prognostic factors. We followed up the patients for 1 year after stroke onset. The patients were divided into 2 groups according to cryptogenic stroke and known causes (small-vessel occlusion, large-artery atherosclerosis, cardioembolism, and other determined cause), and survival was compared. The hazard ratios (HRs) and 95% CIs for mortality were calculated using Cox regression models. We identified 135 eligible patients (39% women; median age, 75 years). Of these patients, 51% had distant metastasis. A total of 65 (48%) and 70 (52%) patients had cryptogenic stroke and known causes, respectively. Patients with cryptogenic stroke had significantly shorter survival than those with known causes (HR [95% CI], 3.11 [1.82-5.32]). The multivariable Cox regression analysis revealed that distant metastasis, plasma D-dimer levels, venous thromboembolism (either deep venous thrombosis or pulmonary embolism) complications at stroke onset were independent predictors of mortality after adjusting for potential confounders. Cryptogenic stroke was associated with prognosis in univariable analysis but was not significant in multivariable analysis. The plasma D-dimer levels stratified the prognosis of patients with ischemic stroke and active cancer. Conclusions The prognosis of patients with acute ischemic stroke and active cancer varied considerably depending on stroke mechanism, distant metastasis, and coagulation abnormalities. The present study confirmed that coagulation abnormalities were crucial in determining the prognosis of such patients.


The Disrupted-in-Schizophrenia-1 Ser704Cys polymorphism and brain neurodevelopmental markers in schizophrenia and healthy subjects.

  • Tsutomu Takahashi‎ et al.
  • Progress in neuro-psychopharmacology & biological psychiatry‎
  • 2015‎

Increasing evidence has implicated the role of Disrupted-in-Schizophrenia-1 (DISC1), a potential susceptibility gene for schizophrenia, in early neurodevelopmental processes. However, the effect of its genotype variation on brain morphologic changes related to neurodevelopmental abnormalities in schizophrenia remains largely unknown. This magnetic resonance imaging study examined the association between DISC1 Ser704Cys polymorphism and a range of brain neurodevelopmental markers [cavum septi pellucidi (CSP), adhesio interthalamica (AI), olfactory sulcus depth, and sulcogyral pattern (Types I, II, III, and IV) in the orbitofrontal cortex (OFC)] in an all Japanese sample of 75 schizophrenia patients and 87 healthy controls. The Cys carriers had significantly larger CSP than the Ser homozygotes for both schizophrenia patients and healthy controls. The Cys carriers also exhibited a reduction in the Type I pattern of the right OFC in the healthy controls, but not in the schizophrenia patients. The DISC1 Ser704Cys polymorphism did not affect the AI and olfactory sulcus depth in either group. These results suggested a possible role of the DISC1 genotype in the early neurodevelopment of human brains, but failed to show its specific role in the neurodevelopmental pathology of schizophrenia.


Infantile Pain Episodes Associated with Novel Nav1.9 Mutations in Familial Episodic Pain Syndrome in Japanese Families.

  • Hiroko Okuda‎ et al.
  • PloS one‎
  • 2016‎

Painful peripheral neuropathy has been correlated with various voltage-gated sodium channel mutations in sensory neurons. Recently Nav1.9, a voltage-gated sodium channel subtype, has been established as a genetic influence for certain peripheral pain syndromes. In this study, we performed a genetic study in six unrelated multigenerational Japanese families with episodic pain syndrome. Affected participants (n = 23) were characterized by infantile recurrent pain episodes with spontaneous mitigation around adolescence. This unique phenotype was inherited in an autosomal-dominant mode. Linkage analysis was performed for two families with 12 affected and nine unaffected members, and a single locus was identified on 3p22 (LOD score 4.32). Exome analysis (n = 14) was performed for affected and unaffected members in these two families and an additional family. Two missense variants were identified: R222H and R222S in SCN11A. Next, we generated a knock-in mouse model harboring one of the mutations (R222S). Behavioral tests (Hargreaves test and cold plate test) using R222S and wild-type C57BL/6 (WT) mice, young (8-9 weeks old; n = 10-12 for each group) and mature (36-38 weeks old; n = 5-6 for each group), showed that R222S mice were significantly (p < 0.05) more hypersensitive to hot and cold stimuli than WT mice. Electrophysiological studies using dorsal root ganglion neurons from 8-9-week-old mice showed no significant difference in resting membrane potential, but input impedance and firing frequency of evoked action potentials were significantly increased in R222S mice compared with WT mice. However, there was no significant difference among Nav1.9 (WT, R222S, and R222H)-overexpressing ND7/23 cell lines. These results suggest that our novel mutation is a gain-of-function mutation that causes infantile familial episodic pain. The mouse model developed here will be useful for drug screening for familial episodic pain syndrome associated with SCN11A mutations.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: