Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 14 papers out of 14 papers

Effect of energy restriction and physical exercise intervention on phenotypic flexibility as examined by transcriptomics analyses of mRNA from adipose tissue and whole body magnetic resonance imaging.

  • Sindre Lee‎ et al.
  • Physiological reports‎
  • 2016‎

Overweight and obesity lead to changes in adipose tissue such as inflammation and reduced insulin sensitivity. The aim of this study was to assess how altered energy balance by reduced food intake or enhanced physical activity affect these processes. We studied sedentary subjects with overweight/obesity in two intervention studies, each lasting 12 weeks affecting energy balance either by energy restriction (~20% reduced intake of energy from food) in one group, or by enhanced energy expenditure due to physical exercise (combined endurance- and strength-training) in the other group. We monitored mRNA expression by microarray and mRNA sequencing from adipose tissue biopsies. We also measured several plasma parameters as well as fat distribution with magnetic resonance imaging and spectroscopy. Comparison of microarray and mRNA sequencing showed strong correlations, which were also confirmed using RT-PCR In the energy restricted subjects (body weight reduced by 5% during a 12 weeks intervention), there were clear signs of enhanced lipolysis as monitored by mRNA in adipose tissue as well as plasma concentration of free-fatty acids. This increase was strongly related to increased expression of markers for M1-like macrophages in adipose tissue. In the exercising subjects (glucose infusion rate increased by 29% during a 12-week intervention), there was a marked reduction in the expression of markers of M2-like macrophages and T cells, suggesting that physical exercise was especially important for reducing inflammation in adipose tissue with insignificant reduction in total body weight. Our data indicate that energy restriction and physical exercise affect energy-related pathways as well as inflammatory processes in different ways, probably related to macrophages in adipose tissue.


Dual specificity phosphatase 5 and 6 are oppositely regulated in human skeletal muscle by acute exercise.

  • Shirin Pourteymour‎ et al.
  • Physiological reports‎
  • 2017‎

Physical activity promotes specific adaptations in most tissues including skeletal muscle. Acute exercise activates numerous signaling cascades including pathways involving mitogen-activated protein kinases (MAPKs) such as extracellular signal-regulated kinase (ERK)1/2, which returns to pre-exercise level after exercise. The expression of MAPK phosphatases (MKPs) in human skeletal muscle and their regulation by exercise have not been investigated before. In this study, we used mRNA sequencing to monitor regulation of MKPs in human skeletal muscle after acute cycling. In addition, primary human myotubes were used to gain more insights into the regulation of MKPs. The two ERK1/2-specific MKPs, dual specificity phosphatase 5 (DUSP5) and DUSP6, were the most regulated MKPs in skeletal muscle after acute exercise. DUSP5 expression was ninefold higher immediately after exercise and returned to pre-exercise level within 2 h, whereas DUSP6 expression was reduced by 43% just after exercise and remained below pre-exercise level after 2 h recovery. Cultured myotubes express both MKPs, and incubation with dexamethasone (Dex) mimicked the in vivo expression pattern of DUSP5 and DUSP6 caused by exercise. Using a MAPK kinase inhibitor, we showed that stimulation of ERK1/2 activity by Dex was required for induction of DUSP5 However, maintaining basal ERK1/2 activity was required for basal DUSP6 expression suggesting that the effect of Dex on DUSP6 might involve an ERK1/2-independent mechanism. We conclude that the altered expression of DUSP5 and DUSP6 in skeletal muscle after acute endurance exercise might affect ERK1/2 signaling of importance for adaptations in skeletal muscle during exercise.


The effect of acute and long-term physical activity on extracellular matrix and serglycin in human skeletal muscle.

  • Marit Hjorth‎ et al.
  • Physiological reports‎
  • 2015‎

Remodeling of extracellular matrix (ECM), including regulation of proteoglycans in skeletal muscle can be important for physiological adaptation to exercise. To investigate the effects of acute and long-term exercise on the expression of ECM-related genes and proteoglycans in particular, 26 middle-aged, sedentary men underwent a 12 weeks supervised endurance and strength training intervention and two acute, 45 min bicycle tests (70% VO2max), one at baseline and one after 12 weeks of training. Total gene expression in biopsies from m. vastus lateralis was measured with deep mRNA sequencing. After 45 min of bicycling approximately 550 gene transcripts were >50% upregulated. Of these, 28 genes (5%) were directly related to ECM. In response to long-term exercise of 12 weeks 289 genes exhibited enhanced expression (>50%) and 20% of them were ECM related. Further analyses of proteoglycan mRNA expression revealed that more than half of the proteoglycans expressed in muscle were significantly enhanced after 12 weeks intervention. The proteoglycan serglycin (SRGN) has not been studied in skeletal muscle and was one of few proteoglycans that showed increased expression after acute (2.2-fold, P < 0.001) as well as long-term exercise (1.4-fold, P < 0.001). Cultured, primary human skeletal muscle cells expressed and secreted SRGN. When the expression of SRGN was knocked down, the expression and secretion of serpin E1 (SERPINE1) increased. In conclusion, acute and especially long-term exercise promotes enhanced expression of several ECM components and proteoglycans. SRGN is a novel exercise-regulated proteoglycan in skeletal muscle with a potential role in exercise adaptation.


Interaction between plasma fetuin-A and free fatty acids predicts changes in insulin sensitivity in response to long-term exercise.

  • Sindre Lee‎ et al.
  • Physiological reports‎
  • 2017‎

The hepatokine fetuin-A can together with free fatty acids (FFAs) enhance adipose tissue (AT) inflammation and insulin resistance via toll-like receptor 4 (TLR4). Although some of the health benefits of exercise can be explained by altered release of myokines from the skeletal muscle, it is not well documented if some of the beneficial effects of exercise can be explained by altered secretion of hepatokines. The aim of this study was to examine the effect of interaction between fetuin-A and FFAs on insulin sensitivity after physical exercise. In this study, 26 sedentary men who underwent 12 weeks of combined endurance and strength exercise were included. Insulin sensitivity was measured using euglycemic-hyperinsulinemic clamp, and AT insulin resistance was indicated by the product of fasting plasma concentration of FFAs and insulin. Blood samples and biopsies from skeletal muscle and subcutaneous AT were collected. Several phenotypic markers were measured, and mRNA sequencing was performed on the biopsies. AT macrophages were analyzed based on mRNA markers. The intervention improved hepatic parameters, reduced plasma fetuin-A concentration (~11%, P < 0.01), slightly changed FFAs concentration, and improved glucose infusion rate (GIR) (~33%, P < 0.01) across all participants. The change in circulating fetuin-A and FFAs interacted to predict some of the change in GIR (β = -42.16, P = 0.030), AT insulin resistance (β = 0.579, P = 0.003), gene expression related to TLR-signaling in AT and AT macrophage mRNA (β = 94.10, P = 0.034) after exercise. We observed no interaction effects between FFAs concentrations and leptin and adiponectin on insulin sensitivity, or any interaction effects between Fetuin-A and FFAs concentrations on skeletal muscle TLR-signaling. The relationship between FFAs levels and insulin sensitivity seemed to be specific for fetuin-A and the AT Some of the beneficial effects of exercise on insulin sensitivity may be explained by changes in circulating fetuin-A and FFAs, promoting less TLR4 signaling in AT perhaps by modulating AT macrophages.


Many commonly used siRNAs risk off-target activity.

  • Ola Snøve‎ et al.
  • Biochemical and biophysical research communications‎
  • 2004‎

Using small interfering RNA (siRNA) to induce sequence specific gene silencing is fast becoming a standard tool in functional genomics. As siRNAs in some cases tolerate mismatches with the mRNA target, knockdown of genes other than the intended target could make results difficult to interpret. In an investigation of 359 published siRNA sequences, we have found that about 75% of them have a risk of eliciting non-specific effects. A possible cause for this is the popular BLAST search engine, which is inappropriate for such short oligos as siRNAs. Furthermore, we used new special purpose hardware to do a transcriptome-wide screening of all possible siRNAs, and show that many unique siRNAs exist per target even if several mismatches are allowed. Hence, we argue that the risk of off-target effects is unnecessary and should be avoided in future siRNA design.


New isoforms of rat Aquaporin-4.

  • Svein Erik Moe‎ et al.
  • Genomics‎
  • 2008‎

Aquaporin-4 (AQP4) is a brain aquaporin implicated in the pathophysiology of numerous clinical conditions including brain edema. Here we show that rat AQP4 has six cDNA isoforms, formed by alternative splicing. These are named AQP4a-f, where AQP4a and AQP4c correspond to the two classical M1 and M23 isoforms, respectively. The various isoforms are differentially expressed in kidney and brain, and their prevalence does not correspond to the level of the respective mRNAs, pointing to posttranscriptional regulation. The three isoforms lacking exon 2, AQP4b, AQP4d, and AQP4f, have an intracellular localization when expressed in cell lines and do not transport water when expressed in Xenopus oocytes. In contrast, the largest of the new isoforms, AQP4e, which contains a novel N-terminal domain, is localized at the plasma membrane in cell lines and functions as a water transporter in Xenopus oocytes.


Regulation of angiopoietin-like protein 4 production during and after exercise.

  • Frode Norheim‎ et al.
  • Physiological reports‎
  • 2014‎

Angiopoietin-like protein 4 (ANGPTL4) may regulate lipoprotein lipase-dependent plasma clearance of triacylglycerol from skeletal muscle during exercise. The aim of this study was to examine the importance of muscle in regulating ANGPTL4 in response to exercise. We sampled muscle biopsies and serum before, immediately after, and 2 h after 45 min of ergometer cycling. Sampling was done before and after a 12-week training intervention in controls and dysglycemic subjects. Moreover, fat biopsies were taken before and after the training intervention. The regulation of ANGPTL4 was also investigated in several tissues of exercising mice, and in cultured myotubes. ANGPTL4 levels in serum and expression in muscle were highest 2 h after exercise in both groups. Whereas ANGPTL4 was higher in muscle of exercising controls as compared to dysglycemic subjects, the opposite was observed in serum. In exercising mice, Angptl4 mRNA showed both higher basal expression and induction in liver compared to muscle. Angptl4 mRNA was much higher in adipose tissue than muscle and was also induced by exercise. We observed two mRNA isoforms of ANGPTL4 in muscle and fat in humans. Both were induced by exercise in muscle; one isoform was expressed 5- to 10-fold higher than the other. Studies in mice and cultured myotubes showed that both fatty acids and cortisol have the potential to increase ANGPTL4 expression in muscle during exercise. In conclusion, ANGPTL4 is markedly induced in muscle in response to exercise. However, liver and adipose tissue may contribute more than muscle to the exercise-induced increase in circulating ANGPTL4.


Synthesis and biological evaluations of marine oxohexadecenoic acids: PPARα/γ dual agonism and anti-diabetic target gene effects.

  • Thomas Sæther‎ et al.
  • European journal of medicinal chemistry‎
  • 2018‎

Obesity and associated disorders such as metabolic syndrome and type 2 diabetes (T2D) have reached epidemic proportions. Several natural products have been reported as Peroxisome Proliferator-Activated Receptor (PPAR) agonists, functioning as lead compounds towards developing new anti-diabetic drugs due to adverse side effects of existing PPAR drugs. We recently isolated and identified (7E)-9-oxohexadec-7-enoic acid (1) and (10E)-9-oxohexadec-10-enoic acid (2) from the marine algae Chaetoceros karianus. Herein we report the total synthesis, pharmacological characterization, and biological evaluations of these naturally occurring oxo-fatty acids (oFAs). The syntheses of 1 and 2 afforded sufficient material for extensive biological evaluations. Both oFAs show an appreciable dose-dependent activation of PPARα and -γ, with EC50 values in the micromolar range, and an ability to regulate important PPAR target genes in hepatocytes and adipocytes. Moreover, both 1 and 2 are able to drive adipogenesis when evaluated in the Simpson-Golabi-Behmel syndrome (SGBS) pre-adipocyte cell model, but with lowered expression of adipocyte markers and reduced lipid accumulation compared to the drug rosiglitazone. This seems to be caused by a transient upregulation of PPARγ and C/EBPα expression. Importantly, whole transcriptome analysis shows that both compounds induce anti-diabetic gene programs in adipocytes by upregulating insulin-sensitizing adipokines and repressing pro-inflammatory cytokines.


Skeletal muscle phosphatidylcholine and phosphatidylethanolamine respond to exercise and influence insulin sensitivity in men.

  • Sindre Lee‎ et al.
  • Scientific reports‎
  • 2018‎

Phosphatidylcholine (PC) and phosphatidylethanolamine (PE) composition in skeletal muscle have been linked to insulin sensitivity. We evaluated the relationships between skeletal muscle PC:PE, physical exercise and insulin sensitivity. We performed lipidomics and measured PC and PE in m. vastus lateralis biopsies obtained from 13 normoglycemic normal weight men and 13 dysglycemic overweight men at rest, immediately after 45 min of cycling at 70% maximum oxygen uptake, and 2 h post-exercise, before as well as after 12 weeks of combined endurance- and strength-exercise intervention. Insulin sensitivity was monitored by euglycemic-hyperinsulinemic clamp. RNA-sequencing was performed on biopsies, and mitochondria and lipid droplets were quantified on electron microscopic images. Exercise intervention for 12 w enhanced insulin sensitivity by 33%, skeletal muscle levels of PC by 21%, PE by 42%, and reduced PC:PE by 16%. One bicycle session reduced PC:PE by 5%. PC:PE correlated negatively with insulin sensitivity (β = -1.6, P < 0.001), percent area of mitochondria (ρ = -0.52, P = 0.035), and lipid droplet area (ρ = 0.55, P = 0.017) on EM pictures, and negatively with oxidative phosphorylation and mTOR based on RNA-sequencing. In conclusion, PC and PE contents of skeletal muscle respond to exercise, and PC:PE is inversely related to insulin sensitivity.


Perilipin 4 in human skeletal muscle: localization and effect of physical activity.

  • Shirin Pourteymour‎ et al.
  • Physiological reports‎
  • 2015‎

Perilipins (PLINs) coat the surface of lipid droplets and are important for the regulation of lipid turnover. Knowledge about the physiological role of the individual PLINs in skeletal muscle is limited although lipid metabolism is very important for muscle contraction. To determine the effect of long-term exercise on PLINs expression, 26 middle-aged, sedentary men underwent 12 weeks combined endurance and strength training intervention. Muscle biopsies from m. vastus lateralis and subcutaneous adipose tissue were taken before and after the intervention and total gene expression was measured with deep mRNA sequencing. PLIN4 mRNA exhibited the highest expression of all five PLINs in both tissues, and the expression was significantly reduced after long-term exercise in skeletal muscle. Moreover, PLIN4 mRNA expression levels in muscle correlated with the expression of genes involved in de novo phospholipid biosynthesis, with muscular content of phosphatidylethanolamine and phosphatidylcholine, and with the content of subsarcolemmal lipid droplets. The PLIN4 protein was mainly located at the periphery of skeletal muscle fibers, with higher levels in slow-twitch as compared to fast-twitch skeletal muscle fibers. In summary, we report reduced expression of PLIN4 after long-term physical activity, and preferential slow-twitch skeletal muscle fibers and plasma membrane-associated PLIN4 location.


Tolerated wobble mutations in siRNAs decrease specificity, but can enhance activity in vivo.

  • Torgeir Holen‎ et al.
  • Nucleic acids research‎
  • 2005‎

RNA interference (RNAi) has become an invaluable tool for functional genomics. A critical use of this tool depends on an understanding of the factors that determine the specificity and activity of the active agent, small interfering RNA (siRNA). Several studies have concluded that tolerance of mutations can be considerable and hence lead to off-target effects. In this study, we have investigated in vivo the toleration of wobble (G:U) mutations in high activity siRNAs against Flap Endonuclease 1 (Fen1) and Aquaporin-4 (Aqp4). Mutations in the central part of the antisense strand caused a pronounced decrease in activity, while mutations in the 5' and 3'ends were tolerated very well. Furthermore, based on analysis of nine different mutated siRNAs with widely differing intrinsic activities, we conclude that siRNA activity can be significantly enhanced by wobble mutations (relative to mRNA), in the 5' terminal of the antisense strand. These findings should facilitate design of active siRNAs where the target mRNA offers limited choice of siRNA positions.


Small-scale purification and mass spectrometry analysis reveal a third aquaporin-4 protein isoform of 36 kDa in rat brain.

  • Jan Gunnar Sørbø‎ et al.
  • Journal of neuroscience methods‎
  • 2012‎

Aquaporin-4 (AQP4) is known to have two main isoforms M1 and M23 in the brain. Immunoblot analyses have provided evidence of additional AQP4 immunopositive bands, suggesting that the repertoire of AQP4 isoforms is broader than previously assumed. As isoforms beyond M1 and M23 are not observed in recombinant systems, investigation of novel isoforms requires the use of a native source. Here we report purification of AQP4 to three silver-stained proteins on SDS-PAGE. This was achieved by organelle separation, alkaline stripping of cellular membranes, detergent solubilization and multiple chromatographic steps. The three proteins that co-purified were identified as AQP4 by mass spectrometry. These results represent the first purification of AQP4 from a native source and demonstrate by mass spectrometry the presence of a third AQP4 isoform of 36 kDa in the rat brain. Immunoblots revealed that the same isoform is present in the mouse, pig, and human brain.


Mechanisms of RNAi: mRNA cleavage fragments may indicate stalled RISC.

  • Torgeir Holen‎
  • Journal of RNAi and gene silencing : an international journal of RNA and gene targeting research‎
  • 2005‎

The molecular mechanism of RNA interference (RNAi) is under intense investigation. We previously demonstrated the existence of inactive siRNAs and also of mRNA cleavage in vivo in human cells. Here it is shown that some siRNAs with low activity leave mRNA cleavage fragments while an siRNA with higher activity does not. The pattern is consistent with both short-term (4-24 hours) and long-term (1-4 days) time-series. Analysis of the putative 3' mRNA cleavage product showed high GC content immediately after the cleavage point. The cleavage fragments might indicate a stalled or slowed RNAi cleavage complex - possibly in the RISC enzyme restoration phase - and thus constitute a novel explanation for the existence of inactive siRNAs.


Irisin - a myth rather than an exercise-inducible myokine.

  • Elke Albrecht‎ et al.
  • Scientific reports‎
  • 2015‎

The myokine irisin is supposed to be cleaved from a transmembrane precursor, FNDC5 (fibronectin type III domain containing 5), and to mediate beneficial effects of exercise on human metabolism. However, evidence for irisin circulating in blood is largely based on commercial ELISA kits which are based on polyclonal antibodies (pAbs) not previously tested for cross-reacting serum proteins. We have analyzed four commercial pAbs by Western blotting, which revealed prominent cross-reactivity with non-specific proteins in human and animal sera. Using recombinant glycosylated and non-glycosylated irisin as positive controls, we found no immune-reactive bands of the expected size in any biological samples. A FNDC5 signature was identified at ~20 kDa by mass spectrometry in human serum but was not detected by the commercial pAbs tested. Our results call into question all previous data obtained with commercial ELISA kits for irisin, and provide evidence against a physiological role for irisin in humans and other species.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: