Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 40 papers

Identification of Three Type II Toxin-Antitoxin Systems in Streptococcus suis Serotype 2.

  • Jiali Xu‎ et al.
  • Toxins‎
  • 2018‎

Type II toxin-antitoxin (TA) systems are highly prevalent in bacterial genomes and have been extensively studied. These modules involve in the formation of persistence cells, the biofilm formation, and stress resistance, which might play key roles in pathogen virulence. SezAT and yefM-yoeB TA modules in Streptococcus suis serotype 2 (S. suis 2) have been studied, although the other TA systems have not been identified. In this study, we investigated nine putative type II TA systems in the genome of S. suis 2 strain SC84 by bioinformatics analysis and identified three of them (two relBE loci and one parDE locus) that function as typical type II TA systems. Interestingly, we found that the introduction of the two RelBE TA systems into Escherichia coli or the induction of the ParE toxin led to cell filamentation. Promoter activity assays indicated that RelB1, RelB2, ParD, and ParDE negatively autoregulated the transcriptions of their respective TA operons, while RelBE2 positively autoregulated its TA operon transcription. Collectively, we identified three TA systems in S. suis 2, and our findings have laid an important foundation for further functional studies on these TA systems.


Novel 4-(4-substituted amidobenzyl)furan-2(5H)-one derivatives as topoisomerase I inhibitors.

  • Cheng-Kang Peng‎ et al.
  • European journal of medicinal chemistry‎
  • 2017‎

In this study, two series of novel 4-(4-substituted amidobenzyl)furan-2(5H)-one derivatives containing an α,β-unsaturated lactone fragment were synthesized and screened for Topo I inhibition and antitumor activity. The topoisomerase I inhibitory activities and cytotoxicities against three human cancer cell lines (MCF-7,Hela,A549) were evaluated. The results revealed that series 2, compounds bearing an exocyclic double bond on the furanone ring, generally showed more potent activity than series 1, compounds lacking an exocyclic double bond. Several compounds of series 2 possess significant Topo I inhibitory activity and potent antiproliferative activity against cancer cell lines. Further mechanism studies of the most active compound of series 2 (B-15) indicated that synthetic compounds can not only stabilize the drug-enzyme-DNA covalent ternary complex as well as camptothecin, but also interfere with the binding between Topo I and DNA. The binding patterns of these compounds with Topo I and structure-activity relationships are discussed.


Indoleamine 2, 3-dioxygenase 1enhanceshepatocytes ferroptosis in acute immune hepatitis associated with excess nitrative stress.

  • Ting Zeng‎ et al.
  • Free radical biology & medicine‎
  • 2020‎

Ferroptosis is a recently recognized form of regulated cell death that is characterized by lipid peroxidation. However, the molecular mechanisms of ferroptosis in acute immune hepatitis (AIH) are largely unknown. In this study, we investigated the classical ferroptotic events in the livers of mice with concanavalin A (ConA) to induce AIH. The dramatically upregulated gene indoleamine 2, 3-dioxygenase 1 (IDO1) was identified with AIH, and its role in generation of ferroptosis and reactive nitrogen species (RNS) was assessed both in vitro and in vivo by genetic deletion or pharmacologic inhibition of IDO1. We observed that ferroptosis contributed to the ConA-induced hepatic damage, which was confirmed by the therapeutical effects of ferroptosis inhibitor (ferrostatin-1). Noteworthy, upregulation of hepatic IDO1 and nitrative stress in ConA-induced hepatic damage were also remarkably inhibited by the ferroptosis abolishment. Additionally, IDO1 deficiency contributed to ferroptosis resistance by activating solute carrier family 7 member 11 (SLC7A11; also known as xCT) expression, accompanied with the reductions of murine liver lesions and RNS. Meanwhile, IDO inhibitor 1-methyl tryptophan alleviated murine liver damage with the reduction of inducible nitric oxide synthase and 3-nitrotyrosine expression. Consistent with the results in vivo, hepatocytes-specific knockdown of IDO1 led to ferroptosis resistance upon exposure to ferroptosis-inducing compound (Erastin) in vitro, whereas IDO1 overexpression aggravated the classical ferroptotic events, and the RNS stress. Overall, these results revealed a novel molecular mechanism of ferroptosis with the key feature of nitrative stress in ConA-induced liver injury, and also identified IDO1-dependent ferroptosis as a potential target for the treatment of AIH.


Salidroside Attenuates Cognitive Dysfunction in Senescence-Accelerated Mouse Prone 8 (SAMP8) Mice and Modulates Inflammation of the Gut-Brain Axis.

  • Zeping Xie‎ et al.
  • Frontiers in pharmacology‎
  • 2020‎

Background: Alzheimer's disease (AD) is a fatal neurodegenerative disease characterized by progressive cognitive decline and memory loss. However, several therapeutic approaches have shown unsatisfactory outcomes in the clinical setting. Thus, developing alternative therapies for the prevention and treatment of AD is critical. Salidroside (SAL) is critical, an herb-derived phenylpropanoid glycoside compound, has been shown to attenuate lipopolysaccharide (LPS)-induced cognitive impairment. However, the mechanism underlying its neuroprotective effects remains unclear. Here, we show that SAL has a therapeutic effect in the senescence-accelerated mouse prone 8 (SAMP8) strain, a reliable and stable mouse model of AD. Methods: SAMP8 mice were treated with SAL, donepezil (DNP) or saline, and cognitive behavioral impairments were assessed using the Morris water maze (MWM), Y maze, and open field test (OFT). Fecal samples were collected and analyzed by 16S rRNA sequencing on an Illumina MiSeq system. Brain samples were analyzed to detect beta-amyloid (Aβ) 1-42 (Aβ1-42) deposition by immunohistochemistry (IHC) and western blotting. The activation of microglia and neuroinflammatory cytokines was detected by immunofluorescence (IF), western blotting and qPCR. Serum was analyzed by a Mouse High Sensitivity T Cell Magnetic Bead Panel on a Luminex-MAGPIX multiplex immunoassay system. Results: Our results suggest that SAL effectively alleviated hippocampus-dependent memory impairment in the SAMP8 mice. SAL significantly 1) reduced toxic Aβ1-42 deposition; 2) reduced microglial activation and attenuated the levels of the proinflammatory factors IL-1β, IL-6, and TNF-α in the brain; 3) improved the gut barrier integrity and modified the gut microbiota (reversed the ratio of Bacteroidetes to Firmicutes and eliminated Clostridiales and Streptococcaceae, which may be associated with cognitive deficits); and 4) decreased the levels of proinflammatory cytokines, particularly IL-1α, IL-6, IL-17A and IL-12, in the peripheral circulation, as determined by a multiplex immunoassay. Conclusion: In summary, SAL reversed AD-related changes in SAMP8 mice, potentially by regulating the microbiota-gut-brain axis and modulating inflammation in both the peripheral circulation and central nervous system. Our results strongly suggest that SAL has a preventive effect on cognition-related changes in SAMP8 mice and highlight its value as a potential agent for drug development.


Blockade of Indoleamine 2, 3-dioxygenase 1 ameliorates hippocampal neurogenesis and BOLD-fMRI signals in chronic stress precipitated depression.

  • Lei Gao‎ et al.
  • Aging‎
  • 2021‎

Indoleamine 2, 3-dioxygenase 1 (IDO1) has been implicated in the pathogenesis of depression, though its molecular mechanism is still poorly understood. We investigated the molecular mechanism of IDO1 in depression by using the chronic unpredictable mild stress (CUMS) model in Ido1-/- mice and WT mice. The brain blood oxygen level dependent (BOLD) signals in mice were collected by functional magnetic resonance imaging (fMRI) technology. IDO1 inhibitor INCB024360 was intervened in dorsal raphe nucleus (DRN) through stereotactic injection. We found an elevation of serum IDO1 activity and decreased 5-HT in CUMS mice, and the serum IDO1 activity was negatively correlated with 5-HT level. Consistently, IDO1 was increased in hippocampus and DRN regions, accompanied by a reduction of hippocampal BDNF levels in mice with CUMS. Specifically, pharmacological inhibition of IDO1 activity in the DRN alleviated depressive-like behaviour with improving hippocampal BDNF expression and neurogenesis in CUMS mice. Furthermore, ablation of Ido1 exerted stress resistance and decreased the sensitivity of depression in CUMS mice with the stable BOLD signals, BDNF expression and neurogenesis in hippocampus. Thus, IDO1 hyperactivity played crucial roles in modulating 5-HT metabolism and BDNF function thereby impacting outcomes of hippocampal neurogenesis and BOLD signals in depressive disorder.


ASC Regulates Subcutaneous Adipose Tissue Lipogenesis and Lipolysis via p53/AMPKα Axis.

  • Hong Chen‎ et al.
  • International journal of molecular sciences‎
  • 2022‎

Obesity has become an extensive threat to human health due to associated chronic inflammation and metabolic diseases. Apoptosis-associated speck-like protein (ASC) is a critical link between inflammasome and apoptosis-inducing proteins. In this study, we aimed to clarify the role of ASC in lipid metabolism. With high-fat diet (HFD) and knockout leptin gene mice (ob/ob), we found that ASC expression in subcutaneous adipose tissue (SAT) correlated with obesity. It could also positively regulate the reprogramming of cellular energy metabolism. Stromal vascular fractions (SVF) cells derived from the SAT of Asc-/- mice or SVF from wild-type (WT) mice transfected with ASC siRNA were used to further investigate the underlying molecular mechanisms. We found ASC deficiency could lead to lipogenesis and inhibit lipolysis in SAT, aggravating lipid accumulation and impairing metabolic balance. In addition, our results showed that p53 and AMPKα expression were inhibited in SAT when ASC level was low. p53 and AMP-activated protein kinase α (AMPKα) were then assessed to elucidate whether they were downstream of ASC in regulating lipid metabolism. Our results revealed that ASC deficiency could promote lipid accumulation by increasing lipogenesis and decreasing lipolysis through p53/AMPKα axis. Regulation of ASC on lipid metabolism might be a novel therapeutic target for obesity.


Study of FOXO1-interacting proteins using TurboID-based proximity labeling technology.

  • Yanting Su‎ et al.
  • BMC genomics‎
  • 2023‎

Protein‒protein interactions (PPIs) are the foundation of the life activities of cells. TurboID is a biotin ligase with higher catalytic efficiency than BioID or APEX that reduces the required labeling time from 18 h to 10 min. Since many proteins participate in binding and catalytic events that are very short-lived, it is theoretically possible to find relatively novel binding proteins using the TurboID technique. Cell proliferation, apoptosis, autophagy, oxidative stress and metabolic disorders underlie many diseases, and forkhead box transcription factor 1 (FOXO1) plays a key role in these physiological and pathological processes.


Identification of gender-related metabolic disturbances in autism spectrum disorders using urinary metabolomics.

  • Xiyue Xiong‎ et al.
  • The international journal of biochemistry & cell biology‎
  • 2019‎

Autism spectrum disorders (ASD) are a highly heterogeneous group of neurodevelopmental disorders that are more commonly diagnosed in boys than in girls. The reasons for gender differences in ASD are unknown and no definitive current evidence can explain male predominance. Therefore, in search for laboratory biomarkers responsible for ASD, a comprehensive metabolomics study was performed by metabolic profiling of urine samples in 51 ASD subjects and 51 age- and sex-matched children with typical development. Orthogonal partial least-squares discriminant analysis (OPLS-DA) models with poor quality failed to perform the analysis based on gender in the ASD and control groups. OPLS-DA models based on single-sex samples, especially in female subjects, had better clustering between the ASD and control groups with an increase in the R2 and Q2 values compared with those in the whole group. Significantly increased levels of adenine, 2-Methylguanosine, creatinine, and 7alpha-hydroxytestololactone and a decrease in creatine were observed in the female ASD subjects. In particular, 7alpha-hydroxytestololactone, which has a structure similar to that of testolactone, was positively correlated with adenine (Pearson correlation coefficient, r = 0.738, p < 0.01), creatinine (r = 0.826, p < 0.01), and 2-Methylguanosine (r = 0.757, p < 0.01) and negatively correlated with creatine (r=-0.413, p < 0.05). A receiver operating characteristic curve analysis using the creatinine:creatine ratio yielded an area under the curve of 0.913 (95% CI: 0.806-1). These metabolites may be sex-related or sex-sensitive to an extent and can be valuable for identification of the molecular pathways involved in the gender bias in manifestation of ASD. The creatinine:creatine ratio has a potential to be a good predictor of ASD in the female subjects.


Ethiodized poppyseed oil versus ioversol for image quality and adverse events in hysterosalpingography: a prospective cohort study.

  • Yiqing Tan‎ et al.
  • BMC medical imaging‎
  • 2019‎

This study aimed to investigate the image quality and adverse events (AEs) of ethiodized poppyseed oil (EPO) compared with ioversol as contrast agents in hysterosalpingography (HSG).


Wnt Signaling Mediates the Aging-Induced Differentiation Impairment of Intestinal Stem Cells.

  • Hui Cui‎ et al.
  • Stem cell reviews and reports‎
  • 2019‎

Stem cell aging underlies aging-associated disorders, such as steeply increased incidences of tumors and impaired regeneration capacity upon stress. However, whether and how the intestinal stem cells age remains largely unknown. Here we show that intestinal stem cells derived from 24-month-old mice hardly form typical organoids with crypt-villus structures, but rather mainly form big, rounded cysts devoid of differentiated cell types, which mimics the culturing of heterozygous APC-deficient cells from the APCmin mouse line. Further analysis showed that cultured crypts derived from aged mice exhibited reduced expression levels of differentiation genes and higher expression of Wnt target genes. Lowering the concentration of R-spondin-1 in the culture system significantly reduced formation of rounded cysts, accompanied by an increased formation of organoids from crypts derived from old mice. We are the first to uncover that intestinal stem cells derived from old mice harbor significant deficiency in differentiation that can be partially rescued through a reduction in R-spondin-1 exposure. This could be highly relevant to intestinal tumor development and the reduced regeneration potential observed in the aged population. Our study provides the first experimental evidence that an over-responsiveness to Wnt/beta-catenin signaling of aged intestinal stem cells mediates the aging-induced deficiency in differentiation, and could serve as a potential target to ameliorate aging-associated intestinal pathologies.


Ginsenoside Rb1 Alleviates Alcohol-Induced Liver Injury by Inhibiting Steatosis, Oxidative Stress, and Inflammation.

  • Yuqi Lai‎ et al.
  • Frontiers in pharmacology‎
  • 2021‎

Alcoholic liver disease (ALD) has become a heavy burden on health worldwide. Ginsenoside Rb1 (GRb1), extracted from Panax quinquefolium L., has protective effects on many diseases, but the effect and mechanisms of GRb1 on ALD remain unknown. This study aimed to investigate the protective effects of GRb1 on ALD and to discover the potential mechanisms. Zebrafish larvae were exposed to 350 mM ethanol for 32 h to establish a model of acute alcoholic liver injury, and the larvae were then treated with 6.25, 12.5, or 25 μM GRb1 for 48 h. The human hepatocyte cell line was stimulated by 100 mM ethanol and meanwhile incubated with 6.25, 12.5, and 25 μM GRb1 for 24 h. The lipid changes were detected by Oil Red O staining, Nile Red staining, and triglyceride determination. The antioxidant capacity was assessed by fluorescent probes in vivo, and the expression levels of inflammatory cytokines were detected by immunohistochemistry, immunofluorescence, and quantitative real-time PCR. The results showed that GRb1 alleviated lipid deposition in hepatocytes at an optimal concentration of 12.5 μM in vivo. GRb1 reversed the reactive oxygen species accumulation caused by alcohol consumption and partially restored the level of glutathione. Furthermore, GRb1 ameliorated liver inflammation by inhibiting neutrophil infiltration in the liver parenchyma and downregulating the expression of nuclear factor-kappa B pathway-associated proinflammatory cytokines, including tumor necrosis factor-α and interleukin-1β. This study revealed that GRb1 has a protective effect on alcohol-induced liver injury due to its resistance to lipid deposition as well as antioxidant and anti-inflammatory actions. These findings suggest that GRb1 may be a promising candidate against ALD.


Drug Transporters in the Kidney: Perspectives on Species Differences, Disease Status, and Molecular Docking.

  • Wei Zou‎ et al.
  • Frontiers in pharmacology‎
  • 2021‎

The kidneys are a pair of important organs that excretes endogenous waste and exogenous biological agents from the body. Numerous transporters are involved in the excretion process. The levels of these transporters could affect the pharmacokinetics of many drugs, such as organic anion drugs, organic cationic drugs, and peptide drugs. Eleven drug transporters in the kidney (OAT1, OAT3, OATP4C1, OCT2, MDR1, BCRP, MATE1, MATE2-K, OAT4, MRP2, and MRP4) have become necessary research items in the development of innovative drugs. However, the levels of these transporters vary between different species, sex-genders, ages, and disease statuses, which may lead to different pharmacokinetics of drugs. Here, we review the differences of the important transports in the mentioned conditions, in order to help clinicians to improve clinical prescriptions for patients. To predict drug-drug interactions (DDIs) caused by renal drug transporters, the molecular docking method is used for rapid screening of substrates or inhibitors of the drug transporters. Here, we review a large number of natural products that represent potential substrates and/or inhibitors of transporters by the molecular docking method.


Xiaoyaosan Exerts Antidepressant Effect by Downregulating RAGE Expression in Cingulate Gyrus of Depressive-Like Mice.

  • Weixin Yan‎ et al.
  • Frontiers in pharmacology‎
  • 2021‎

Xiaoyaosan (XYS), as a classic Chinese medicine compound, has been proven to have antidepressant effect in many studies, but its mechanism has not been clarified. In our previous studies, we found that chronic stress can induce depressive-like behavior and lead to emotion-related cingulate gyrus (Cg) dysfunction, as well as the decrease of neurotrophic factors and the increase of inflammatory-related proteins. Therefore, we speculated that XYS may play an antidepressant role by regulating the inflammation-related receptor of advanced glycation protein end product (RAGE) to affect the functional connectivity (FC) signal of the Cg and improve the depressive-like behavior. In order to verify this hypothesis, we analyzed the FC and RAGE expression in the Cg of depressive-like mice induced by chronic unpredictable mild stress (CUMS) and verified it with RAGE knockout mice. At the same time, we detected the effect of XYS on the depressive-like behavior, expression of RAGE, and the FC of the Cg of mice. The results showed that the FC of the Cg of depressive-like mice induced by CUMS was weakened, and the expression of RAGE was upregulated. The antidepressant effect of XYS is similar to that of fluoxetine hydrochloride, which can significantly reduce the depressive-like behavior of mice and inhibit the expression of the RAGE protein and mRNA in the Cg, and increase the FC of the Cg in mice. In conclusion, XYS may play an antidepressant role by downregulating the expression of RAGE in the Cg of depressive-like mice induced by CUMS, thereby affecting the functional signal and improving the depressive-like behavior.


ANXA1-derived peptide for targeting PD-L1 degradation inhibits tumor immune evasion in multiple cancers.

  • Zheng-Zheng Yu‎ et al.
  • Journal for immunotherapy of cancer‎
  • 2023‎

Immune checkpoint inhibitors (ICIs) therapy targeting programmed cell death 1 (PD-1)/programmed cell death ligand 1 (PD-L1) shows promising clinical benefits. However, the relatively low response rate highlights the need to develop an alternative strategy to target PD-1/PD-L1 immune checkpoint. Our study focuses on the role and mechanism of annexin A1 (ANXA1)-derived peptide A11 degrading PD-L1 and the effect of A11 on tumor immune evasion in multiple cancers.


Small extracellular vesicles derived from four dimensional-culture of mesenchymal stem cells induce alternatively activated macrophages by upregulating IGFBP2/EGFR to attenuate inflammation in the spinal cord injury of rats.

  • Junhua Wang‎ et al.
  • Frontiers in bioengineering and biotechnology‎
  • 2023‎

Effectively reducing the inflammatory response after spinal cord injury (SCI) is a challenging clinical problem and the subject of active investigation. This study employed a porous scaffold-based three dimensional long-term culture technique to obtain human umbilical cord mesenchymal stem cell (hUC-MSC)-derived Small Extracellular Vesicles (sEVs) (three dimensional culture over time, the "4D-sEVs"). Moreover, the vesicle size, number, and inner protein concentrations of the MSC 4D-sEVs contained altered protein profiles compared with those derived from 2D culture conditions. A proteomics analysis suggested broad changes, especially significant upregulation of Epidermal Growth Factors Receptor (EGFR) and Insulin-like Growth Factor Binding Protein 2 (IGFBP2) in 4D-sEVs compared with 2D-sEVs. The endocytosis of 4D-sEVs allowed for the binding of EGFR and IGFBP2, leading to downstream STAT3 phosphorylation and IL-10 secretion and effective induction of macrophages/microglia polarization from the pro-inflammatory M1 to anti-inflammatory M2 phenotype, both in vitro and in the injured areas of rats with compressive/contusive SCI. The reduction in neuroinflammation after 4D-sEVs delivery to the injury site epicenter led to significant neuroprotection, as evidenced by the number of surviving spinal neurons. Therefore, applying this novel 4D culture-derived Small Extracellular Vesicles could effectively curb the inflammatory response and increase tissue repair after SCI.


Cucurbitacin B exerts anti-cancer activities in human multiple myeloma cells in vitro and in vivo by modulating multiple cellular pathways.

  • Tai Yang‎ et al.
  • Oncotarget‎
  • 2017‎

Cucurbitacin B (CuB), a triterpenoid compound isolated from the stems of Cucumis melo, has long been used to treat hepatitis and hepatoma in China. Although its remarkable anti-cancer activities have been reported, the mechanism by which it achieves this therapeutic activity remains unclear. This study was designed to investigate the molecular mechanisms by which CuB inhibits cancer cell proliferation. Our results indicate that CuB is a novel inhibitor of Aurora A in multiple myeloma (MM) cells, arresting cells in the G2/M phase. CuB also inhibited IL-10-induced STAT3 phosphorylation, synergistically increasing the anti-tumor activity of Adriamycin in vitro. CuB induced dephosphorylation of cofilin, resulting in the loss of mitochondrial membrane potential, release of cytochrome c, and activation of caspase-8. CuB inhibited MM tumor growth in a murine MM model, without host toxicity. In conclusion, these results indicate that CuB interferes with multiple cellular pathways in MM cells. CuB thus represents a promising therapeutic tool for the treatment of MM.


Identification and characterization of the Cucurbitacins, a novel class of small-molecule inhibitors of Tropomyosin receptor kinase a.

  • Yueling Zhong‎ et al.
  • BMC complementary and alternative medicine‎
  • 2019‎

NGF-TrkA is well known to play a key role in propagating and sustaining pruritogenic signals, which form the pathology of chronic pruritus. Inhibition of NGF-TrkA is a known strategy for the treatment of pruritus. In the present paper, we describe the identification, in vitro characterization, structure-activity analysis, and inhibitory evaluation of a novel TrkA inhibitory scaffold exemplified by Cucurbitacins (Cus).


Short-term dietary restriction in old mice rejuvenates the aging-induced structural imbalance of gut microbiota.

  • Ting Zeng‎ et al.
  • Biogerontology‎
  • 2019‎

The world's aging population is growing rapidly. Incidences of multiple pathologies, such as abdominal obesity, cardiovascular and cerebrovascular diseases, type 2 diabetes, and malignant neoplasms, increase sharply with age. Aged individuals possess a significantly shifted composition of gut microbiota, which is suggested to play important roles in aging associated pathologies. Whether the existing shifted structural composition of microbiota in aged populations can be reverted non-pharmacologically has not been studied so far. Here, we show an intestinal flora imbalance in old C57BL/6J mice with a remarkable dominant proportion of microbes promoting lipid metabolism and inflammation. Intriguingly, short-term (2 months) dietary restriction was enough to significantly revert the imbalance of intestinal flora in aged mice toward a more balanced structural composition as shown in young mice. Our study provides the first evidence that short-term dietary restriction in old mice can restore the already dysfunctional aged gut microbiota. Our study provides the first evidence that short-term dietary restriction in old mice can restore the already dysfunctional aged gut microbiota, which may help ameliorate aging-related disorders plaguing the vast elderly population.


Effectiveness of eHealth Interventions on Moderate-to-Vigorous Intensity Physical Activity Among Patients in Cardiac Rehabilitation: Systematic Review and Meta-analysis.

  • Tianzhuo Yu‎ et al.
  • Journal of medical Internet research‎
  • 2023‎

Cardiac rehabilitation is a class IA recommendation for patients with cardiovascular diseases. Physical activity is the core component and core competency of a cardiac rehabilitation program. However, many patients with cardiovascular diseases are failing to meet cardiac rehabilitation guidelines that recommend moderate-to-vigorous intensity physical activity.


P-Hydroxyacetophenone Ameliorates Alcohol-Induced Steatosis and Oxidative Stress via the NF-κB Signaling Pathway in Zebrafish and Hepatocytes.

  • Sha Huang‎ et al.
  • Frontiers in pharmacology‎
  • 2019‎

Alcoholic liver disease (ALD), which is recognized as an important health problem worldwide, is a direct consequence of alcohol consumption, which can induce alcoholic fatty liver, alcoholic steatohepatitis, fibrosis and cirrhosis. P-Hydroxyacetophenone (p-HAP) is mainly used as a choleretic and hepatoprotective compound and has anti-hepatitis B, antioxidative and anti-inflammatory effects. However, no experimental report has focused on p-HAP in ALD, and the effect and mechanism of p-HAP in ALD remain unknown. In addition, there is no research on p-HAP in the treatment of ALD. The potential molecular mechanisms of p-HAP against acute alcoholic liver injury remain unknown. In this study, we aimed to investigate whether p-HAP alleviates ALD and to clarify the potential molecular mechanisms. Zebrafish larvae were soaked in 350 mmol/l ethanol for 32 h at 4 days post fertilization (dpf) and then treated with p-HAP for 48 h. We chose various outcome measures, such as liver histomorphological changes, antioxidation and antiapoptosis capability and expression of inflammation-related proteins, to elucidate the essential mechanism of p-HAP in the treatment of alcohol-induced liver damage. Subsequently, we applied pathological hematoxylin and eosin (H&E) staining, Nile red staining and oil red O staining to detect the histomorphological and lipid changes in liver tissues. We also used TUNEL staining, immunochemistry and Western blot analysis to reveal the changes in apoptosis- and inflammation-related proteins. In particular, we used a variety of fluorescent probes to detect the antioxidant capacity of p-HAP in live zebrafish larvae in vivo. In addition, we discovered that p-HAP treatment relieved alcoholic hepatic steatosis in a dose-dependent manner and that the 50 μM dose had the best therapeutic effect. Generally, this research indicated that p-HAP might reduce oxidative stress and cell apoptosis in vivo and in vitro via the NF-κB signaling pathway.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: