Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 5 papers out of 5 papers

Decreased macrophage number and activation lead to reduced lymphatic vessel formation and contribute to impaired diabetic wound healing.

  • Kazuichi Maruyama‎ et al.
  • The American journal of pathology‎
  • 2007‎

Impaired wound healing is a common complication of diabetes. Although it is well known that both macrophages and blood vessels are critical to wound repair, the role of wound-associated lymphatic vessels has not been well investigated. We report that both the presence of activated macrophages and the formation of lymphatic vessels are rate-limiting to the healing of diabetic wounds. We have previously shown that macrophages contribute to the lymphatic vessels that form during the acute phase of corneal wound healing. We now demonstrate that this is a general phenomenon; cells that co-stain for the macrophage marker F4/80 and the lymphatic markers LYVE-1 (lymphatic vascular endothelium hyaluronate receptor) and podoplanin contribute to lymphatic vessels in full-thickness wounds. LYVE-1-positive lymphatic vessels and CD31-positive blood vessels were significantly reduced in corneal wound healing in diabetic mice (db/db) (P < 0.02) compared with control (db/+) mice. Glucose treatment of control macrophages led to the down-regulation of the lymphatic-specific receptor VEGFR3 and its ligands, vascular endothelial growth factor-C and -D (VEGF-C, -D). Interleukin-1beta stimulation rescued diabetic macrophage function; application of interleukin-1beta-treated db/db-derived macrophages to wounds in db/db mice induced lymphatic vessel formation and accelerated wound healing. These observations suggest a potential therapeutic approach for healing wounds in diabetic patients.


Estradiol triggers sonic-hedgehog-induced angiogenesis during peripheral nerve regeneration by downregulating hedgehog-interacting protein.

  • Haruki Sekiguchi‎ et al.
  • Laboratory investigation; a journal of technical methods and pathology‎
  • 2012‎

Both estradiol (E2) and Sonic Hedgehog (Shh) contribute to angiogenesis and nerve regeneration. Here, we investigated whether E2 improves the recovery of injured nerves by downregulating the Shh inhibitor hedgehog-interacting protein (HIP) and increasing Shh-induced angiogenesis. Mice were treated with local injections of E2 or placebo one week before nerve-crush injury; 28 days after injury, nerve conduction velocity, exercise duration, and vascularity were significantly greater in E2-treated mice than in placebo-treated mice. E2 treatment was also associated with higher mRNA levels of Shh, the Shh receptor Patched-1, and the Shh transcriptional target Gli1, but with lower levels of HIP. The E2-induced enhancement of nerve vascularity was abolished by the Shh inhibitor cyclopamine, and the effect of E2 treatment on Shh, Gli1, and HIP mRNA expression was abolished by the E2 inhibitor ICI. Gli-luciferase activity in human umbilical-vein endothelial cells (HUVECs) increased more after treatment with E2 and Shh than after treatment with E2 alone, and E2 treatment reduced HIP expression in HUVECs and Schwann cells without altering Shh expression. Collectively, these findings suggest that E2 improves nerve recovery, at least in part, by reducing HIP expression, which subsequently leads to an increase in Shh signaling and Shh-induced angiogenesis.


IL-10 Accelerates Re-Endothelialization and Inhibits Post-Injury Intimal Hyperplasia following Carotid Artery Denudation.

  • Suresh K Verma‎ et al.
  • PloS one‎
  • 2016‎

The role of inflammation on atherosclerosis and restenosis is well established. Restenosis is thought to be a complex response to injury, which includes early thrombus formation, acute inflammation and neo-intimal growth. Inflammatory cells are likely contributors in the host response to vascular injury, via cytokines and chemokines secretion, including TNF-alpha (TNF). We have previously shown that IL-10 inhibits TNF and other inflammatory mediators produced in response to cardiovascular injuries. The specific effect of IL-10 on endothelial cell (ECs) biology is not well elucidated. Here we report that in a mouse model of carotid denudation, IL-10 knock-out mice (IL-10KO) displayed significantly delayed Re-endothelialization and enhanced neo-intimal growth compared to their WT counterparts. Exogenous recombinant IL-10 treatment dramatically blunted the neo-intimal thickening while significantly accelerating the recovery of the injured endothelium in WT mice. In vitro, IL-10 inhibited negative effects of TNF on ECs proliferation, ECs cell cycle, ECs-monocyte adhesion and ECs apoptosis. Furthermore, IL-10 treatment attenuated TNF-induced smooth muscle cells proliferation. Our data suggest that IL-10 differentially regulate endothelial and vascular smooth cells proliferation and function and thus inhibits neo-intimal hyperplasia. Thus, these results may provide insights necessary to develop new therapeutic strategies to limit vascular restenosis during percutaneous coronary intervention (PCI) in the clinics.


Inhibition of melanoma angiogenesis by telomere homolog oligonucleotides.

  • Christina Coleman‎ et al.
  • Journal of oncology‎
  • 2010‎

Telomere homolog oligonucleotides (T-oligos) activate an innate telomere-based program that leads to multiple anticancer effects. T-oligos act at telomeres to initiate signaling through the Werner protein and ATM kinase. We wanted to determine if T-oligos have antiangiogenic effects. We found that T-oligo-treated human melanoma (MM-AN) cells had decreased expression of vascular endothelial growth factor (VEGF), VEGF receptor 2, angiopoeitin-1 and -2 and decreased VEGF secretion. T-oligos activated the transcription factor E2F1 and inhibited the activity of the angiogenic transcription factor, HIF-1alpha. T-oligos inhibited EC tubulogenesis and total tumor microvascular density matrix invasion by MM-AN cells and ECs in vitro. In melanoma SCID xenografts, two systemic T-oligo injections decreased by 60% (P < .004) total tumor microvascular density and the functional vessels density by 80% (P < .002). These findings suggest that restriction of tumor angiogenesis is among the host's innate telomere-based anticancer responses and provide further evidence that T-oligos may offer a powerful new approach for melanoma treatment.


Functional disruption of alpha4 integrin mobilizes bone marrow-derived endothelial progenitors and augments ischemic neovascularization.

  • Gangjian Qin‎ et al.
  • The Journal of experimental medicine‎
  • 2006‎

The cell surface receptor alpha4 integrin plays a critical role in the homing, engraftment, and maintenance of hematopoietic progenitor cells (HPCs) in the bone marrow (BM). Down-regulation or functional blockade of alpha4 integrin or its ligand vascular cell adhesion molecule-1 mobilizes long-term HPCs. We investigated the role of alpha4 integrin in the mobilization and homing of BM endothelial progenitor cells (EPCs). EPCs with endothelial colony-forming activity in the BM are exclusively alpha4 integrin-expressing cells. In vivo, a single dose of anti-alpha4 integrin antibody resulted in increased circulating EPC counts for 3 d. In hindlimb ischemia and myocardial infarction, systemically administered anti-alpha4 integrin antibody increased recruitment and incorporation of BM EPCs in newly formed vasculature and improved functional blood flow recovery and tissue preservation. Interestingly, BM EPCs that had been preblocked with anti-alpha4 integrin ex vivo or collected from alpha4 integrin-deficient mice incorporated as well as control cells into the neovasculature in ischemic sites, suggesting that alpha4 integrin may be dispensable or play a redundant role in EPC homing to ischemic tissue. These data indicate that functional disruption of alpha4 integrin may represent a potential angiogenic therapy for ischemic disease by increasing the available circulating supply of EPCs.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: