Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 23 papers

Quantifying patterns of brain activity: Distinguishing unaffected siblings from participants with ADHD and healthy individuals.

  • Thomas Wolfers‎ et al.
  • NeuroImage. Clinical‎
  • 2016‎

Attention-deficit/hyperactivity disorder (ADHD) is one of the most prevalent and heritable psychiatric disorders. While previous studies have focussed on mapping focal or connectivity differences at the group level, the present study employed pattern recognition to quantify group separation between unaffected siblings, participants with ADHD, and healthy controls on the basis of spatially distributed brain activations. This was achieved using an fMRI-adapted version of the Stop-Signal Task in a sample of 103 unaffected siblings, 184 participants with ADHD, and 128 healthy controls. We used activation maps derived from three task regressors as features in our analyses employing a Gaussian process classifier. We showed that unaffected siblings could be distinguished from participants with ADHD (area under the receiver operating characteristic curve (AUC) = 0.65, p = 0.002, 95% Modified Wald CI: 0.59-0.71 AUC) and healthy controls (AUC = 0.59, p = 0.030, 95% Modified Wald CI: 0.52-0.66 AUC), although the latter did not survive correction for multiple comparisons. Further, participants with ADHD could be distinguished from healthy controls (AUC = 0.64, p = 0.001, 95% Modified Wald CI: 0.58-0.70 AUC). Altogether the present results characterise a pattern of frontolateral, superior temporal and inferior parietal expansion that is associated with risk for ADHD. Unaffected siblings show differences primarily in frontolateral regions. This provides evidence for a neural profile shared between participants with ADHD and their healthy siblings.


Reproducible grey matter patterns index a multivariate, global alteration of brain structure in schizophrenia and bipolar disorder.

  • Emanuel Schwarz‎ et al.
  • Translational psychiatry‎
  • 2019‎

Schizophrenia is a severe mental disorder characterized by numerous subtle changes in brain structure and function. Machine learning allows exploring the utility of combining structural and functional brain magnetic resonance imaging (MRI) measures for diagnostic application, but this approach has been hampered by sample size limitations and lack of differential diagnostic data. Here, we performed a multi-site machine learning analysis to explore brain structural patterns of T1 MRI data in 2668 individuals with schizophrenia, bipolar disorder or attention-deficit/ hyperactivity disorder, and healthy controls. We found reproducible changes of structural parameters in schizophrenia that yielded a classification accuracy of up to 76% and provided discrimination from ADHD, through it lacked specificity against bipolar disorder. The observed changes largely indexed distributed grey matter alterations that could be represented through a combination of several global brain-structural parameters. This multi-site machine learning study identified a brain-structural signature that could reproducibly differentiate schizophrenia patients from controls, but lacked specificity against bipolar disorder. While this currently limits the clinical utility of the identified signature, the present study highlights that the underlying alterations index substantial global grey matter changes in psychotic disorders, reflecting the biological similarity of these conditions, and provide a roadmap for future exploration of brain structural alterations in psychiatric patients.


Boosting Schizophrenia Genetics by Utilizing Genetic Overlap With Brain Morphology.

  • Dennis van der Meer‎ et al.
  • Biological psychiatry‎
  • 2022‎

Schizophrenia is a complex polygenic disorder with subtle, distributed abnormalities in brain morphology. There are indications of shared genetic architecture between schizophrenia and brain measures despite low genetic correlations. Through the use of analytical methods that allow for mixed directions of effects, this overlap may be leveraged to improve our understanding of underlying mechanisms of schizophrenia and enrich polygenic risk prediction outcome.


Individual differences v. the average patient: mapping the heterogeneity in ADHD using normative models.

  • Thomas Wolfers‎ et al.
  • Psychological medicine‎
  • 2020‎

The present paper presents a fundamentally novel approach to model individual differences of persons with the same biologically heterogeneous mental disorder. Unlike prevalent case-control analyses, that assume a clear distinction between patient and control groups and thereby introducing the concept of an 'average patient', we describe each patient's biology individually, gaining insights into the different facets that characterize persistent attention-deficit/hyperactivity disorder (ADHD).


Dissecting the Heterogeneous Cortical Anatomy of Autism Spectrum Disorder Using Normative Models.

  • Mariam Zabihi‎ et al.
  • Biological psychiatry. Cognitive neuroscience and neuroimaging‎
  • 2019‎

The neuroanatomical basis of autism spectrum disorder (ASD) has remained elusive, mostly owing to high biological and clinical heterogeneity among diagnosed individuals. Despite considerable effort toward understanding ASD using neuroimaging biomarkers, heterogeneity remains a barrier, partly because studies mostly employ case-control approaches, which assume that the clinical group is homogeneous.


Human subcortical brain asymmetries in 15,847 people worldwide reveal effects of age and sex.

  • Tulio Guadalupe‎ et al.
  • Brain imaging and behavior‎
  • 2017‎

The two hemispheres of the human brain differ functionally and structurally. Despite over a century of research, the extent to which brain asymmetry is influenced by sex, handedness, age, and genetic factors is still controversial. Here we present the largest ever analysis of subcortical brain asymmetries, in a harmonized multi-site study using meta-analysis methods. Volumetric asymmetry of seven subcortical structures was assessed in 15,847 MRI scans from 52 datasets worldwide. There were sex differences in the asymmetry of the globus pallidus and putamen. Heritability estimates, derived from 1170 subjects belonging to 71 extended pedigrees, revealed that additive genetic factors influenced the asymmetry of these two structures and that of the hippocampus and thalamus. Handedness had no detectable effect on subcortical asymmetries, even in this unprecedented sample size, but the asymmetry of the putamen varied with age. Genetic drivers of asymmetry in the hippocampus, thalamus and basal ganglia may affect variability in human cognition, including susceptibility to psychiatric disorders.


Processing of social and monetary rewards in autism spectrum disorders.

  • Sarah Baumeister‎ et al.
  • The British journal of psychiatry : the journal of mental science‎
  • 2023‎

Reward processing has been proposed to underpin the atypical social feature of autism spectrum disorder (ASD). However, previous neuroimaging studies have yielded inconsistent results regarding the specificity of atypicalities for social reward processing in ASD.


Heterogeneity in Brain Microstructural Development Following Preterm Birth.

  • Ralica Dimitrova‎ et al.
  • Cerebral cortex (New York, N.Y. : 1991)‎
  • 2020‎

Preterm-born children are at increased risk of lifelong neurodevelopmental difficulties. Group-wise analyses of magnetic resonance imaging show many differences between preterm- and term-born infants but do not reliably predict neurocognitive prognosis for individual infants. This might be due to the unrecognized heterogeneity of cerebral injury within the preterm group. This study aimed to determine whether atypical brain microstructural development following preterm birth is significantly variable between infants. Using Gaussian process regression, a technique that allows a single-individual inference, we characterized typical variation of brain microstructure using maps of fractional anisotropy and mean diffusivity in a sample of 270 term-born neonates. Then, we compared 82 preterm infants to these normative values to identify brain regions with atypical microstructure and relate observed deviations to degree of prematurity and neurocognition at 18 months. Preterm infants showed strikingly heterogeneous deviations from typical development, with little spatial overlap between infants. Greater and more extensive deviations, captured by a whole brain atypicality index, were associated with more extreme prematurity and predicted poorer cognitive and language abilities at 18 months. Brain microstructural development after preterm birth is highly variable between individual infants. This poorly understood heterogeneity likely relates to both the etiology and prognosis of brain injury.


Shared pattern of impaired social communication and cognitive ability in the youth brain across diagnostic boundaries.

  • Irene Voldsbekk‎ et al.
  • Developmental cognitive neuroscience‎
  • 2023‎

Abnormalities in brain structure are shared across diagnostic categories. Given the high rate of comorbidity, the interplay of relevant behavioural factors may also cross these classic boundaries.


Charting brain growth and aging at high spatial precision.

  • Saige Rutherford‎ et al.
  • eLife‎
  • 2022‎

Defining reference models for population variation, and the ability to study individual deviations is essential for understanding inter-individual variability and its relation to the onset and progression of medical conditions. In this work, we assembled a reference cohort of neuroimaging data from 82 sites (N=58,836; ages 2-100) and used normative modeling to characterize lifespan trajectories of cortical thickness and subcortical volume. Models are validated against a manually quality checked subset (N=24,354) and we provide an interface for transferring to new data sources. We showcase the clinical value by applying the models to a transdiagnostic psychiatric sample (N=1985), showing they can be used to quantify variability underlying multiple disorders whilst also refining case-control inferences. These models will be augmented with additional samples and imaging modalities as they become available. This provides a common reference platform to bind results from different studies and ultimately paves the way for personalized clinical decision-making.


Accommodating site variation in neuroimaging data using normative and hierarchical Bayesian models.

  • Johanna M M Bayer‎ et al.
  • NeuroImage‎
  • 2022‎

The potential of normative modeling to make individualized predictions from neuroimaging data has enabled inferences that go beyond the case-control approach. However, site effects are often confounded with variables of interest in a complex manner and can bias estimates of normative models, which has impeded the application of normative models to large multi-site neuroimaging data sets. In this study, we suggest accommodating for these site effects by including them as random effects in a hierarchical Bayesian model. We compared the performance of a linear and a non-linear hierarchical Bayesian model in modeling the effect of age on cortical thickness. We used data of 570 healthy individuals from the ABIDE (autism brain imaging data exchange) data set in our experiments. In addition, we used data from individuals with autism to test whether our models are able to retain clinically useful information while removing site effects. We compared the proposed single stage hierarchical Bayesian method to several harmonization techniques commonly used to deal with additive and multiplicative site effects using a two stage regression, including regressing out site and harmonizing for site with ComBat, both with and without explicitly preserving variance caused by age and sex as biological variation of interest, and with a non-linear version of ComBat. In addition, we made predictions from raw data, in which site has not been accommodated for. The proposed hierarchical Bayesian method showed the best predictive performance according to multiple metrics. Beyond that, the resulting z-scores showed little to no residual site effects, yet still retained clinically useful information. In contrast, performance was particularly poor for the regression model and the ComBat model in which age and sex were not explicitly modeled. In all two stage harmonization models, predictions were poorly scaled, suffering from a loss of more than 90% of the original variance. Our results show the value of hierarchical Bayesian regression methods for accommodating site variation in neuroimaging data, which provides an alternative to harmonization techniques. While the approach we propose may have broad utility, our approach is particularly well suited to normative modeling where the primary interest is in accurate modeling of inter-subject variation and statistical quantification of deviations from a reference model.


Genetic architecture of brain age and its causal relations with brain and mental disorders.

  • Esten H Leonardsen‎ et al.
  • Molecular psychiatry‎
  • 2023‎

The difference between chronological age and the apparent age of the brain estimated from brain imaging data-the brain age gap (BAG)-is widely considered a general indicator of brain health. Converging evidence supports that BAG is sensitive to an array of genetic and nongenetic traits and diseases, yet few studies have examined the genetic architecture and its corresponding causal relationships with common brain disorders. Here, we estimate BAG using state-of-the-art neural networks trained on brain scans from 53,542 individuals (age range 3-95 years). A genome-wide association analysis across 28,104 individuals (40-84 years) from the UK Biobank revealed eight independent genomic regions significantly associated with BAG (p < 5 × 10-8) implicating neurological, metabolic, and immunological pathways - among which seven are novel. No significant genetic correlations or causal relationships with BAG were found for Parkinson's disease, major depressive disorder, or schizophrenia, but two-sample Mendelian randomization indicated a causal influence of AD (p = 7.9 × 10-4) and bipolar disorder (p = 1.35 × 10-2) on BAG. These results emphasize the polygenic architecture of brain age and provide insights into the causal relationship between selected neurological and neuropsychiatric disorders and BAG.


Age-related brain deviations and aggression.

  • Nathalie E Holz‎ et al.
  • Psychological medicine‎
  • 2023‎

Disruptive behavior disorders (DBD) are heterogeneous at the clinical and the biological level. Therefore, the aims were to dissect the heterogeneous neurodevelopmental deviations of the affective brain circuitry and provide an integration of these differences across modalities.


Inter-individual differences in human brain structure and morphology link to variation in demographics and behavior.

  • Alberto Llera‎ et al.
  • eLife‎
  • 2019‎

We perform a comprehensive integrative analysis of multiple structural MR-based brain features and find for the first-time strong evidence relating inter-individual brain structural variations to a wide range of demographic and behavioral variates across a large cohort of young healthy human volunteers. Our analyses reveal that a robust 'positive-negative' spectrum of behavioral and demographic variates, recently associated to covariation in brain function, can already be identified using only structural features, highlighting the importance of careful integration of structural features in any analysis of inter-individual differences in functional connectivity and downstream associations with behavioral/demographic variates.


Multimodal imaging improves brain age prediction and reveals distinct abnormalities in patients with psychiatric and neurological disorders.

  • Jaroslav Rokicki‎ et al.
  • Human brain mapping‎
  • 2021‎

The deviation between chronological age and age predicted using brain MRI is a putative marker of overall brain health. Age prediction based on structural MRI data shows high accuracy in common brain disorders. However, brain aging is complex and heterogenous, both in terms of individual differences and the underlying biological processes. Here, we implemented a multimodal model to estimate brain age using different combinations of cortical area, thickness and sub-cortical volumes, cortical and subcortical T1/T2-weighted ratios, and cerebral blood flow (CBF) based on arterial spin labeling. For each of the 11 models we assessed the age prediction accuracy in healthy controls (HC, n = 750) and compared the obtained brain age gaps (BAGs) between age-matched subsets of HC and patients with Alzheimer's disease (AD, n = 54), mild (MCI, n = 90) and subjective (SCI, n = 56) cognitive impairment, schizophrenia spectrum (SZ, n = 159) and bipolar disorder (BD, n = 135). We found highest age prediction accuracy in HC when integrating all modalities. Furthermore, two-group case-control classifications revealed highest accuracy for AD using global T1-weighted BAG, while MCI, SCI, BD and SZ showed strongest effects in CBF-based BAGs. Combining multiple MRI modalities improves brain age prediction and reveals distinct deviations in patients with psychiatric and neurological disorders. The multimodal BAG was most accurate in predicting age in HC, while group differences between patients and HC were often larger for BAGs based on single modalities. These findings indicate that multidimensional neuroimaging of patients may provide a brain-based mapping of overlapping and distinct pathophysiology in common disorders.


Replicating extensive brain structural heterogeneity in individuals with schizophrenia and bipolar disorder.

  • Thomas Wolfers‎ et al.
  • Human brain mapping‎
  • 2021‎

Identifying brain processes involved in the risk and development of mental disorders is a major aim. We recently reported substantial interindividual heterogeneity in brain structural aberrations among patients with schizophrenia and bipolar disorder. Estimating the normative range of voxel-based morphometry (VBM) data among healthy individuals using a Gaussian process regression (GPR) enables us to map individual deviations from the healthy range in unseen datasets. Here, we aim to replicate our previous results in two independent samples of patients with schizophrenia (n1 = 94; n2 = 105), bipolar disorder (n1 = 116; n2 = 61), and healthy individuals (n1 = 400; n2 = 312). In line with previous findings with exception of the cerebellum our results revealed robust group level differences between patients and healthy individuals, yet only a small proportion of patients with schizophrenia or bipolar disorder exhibited extreme negative deviations from normality in the same brain regions. These direct replications support that group level-differences in brain structure disguise considerable individual differences in brain aberrations, with important implications for the interpretation and generalization of group-level brain imaging findings to the individual with a mental disorder.


Deviations from normative brain white and gray matter structure are associated with psychopathology in youth.

  • Rikka Kjelkenes‎ et al.
  • Developmental cognitive neuroscience‎
  • 2022‎

Combining imaging modalities and metrics that are sensitive to various aspects of brain structure and maturation may help identify individuals that show deviations in relation to same-aged peers, and thus benefit early-risk-assessment for mental disorders. We used one timepoint multimodal brain imaging, cognitive, and questionnaire data from 1280 eight- to twenty-one-year-olds from the Philadelphia Neurodevelopmental Cohort. We estimated age-related gray and white matter properties and estimated individual deviation scores using normative modeling. Next, we tested for associations between the estimated deviation scores, and with psychopathology domain scores and cognition. More negative deviations in DTI-based fractional anisotropy (FA) and the first principal eigenvalue of the diffusion tensor (L1) were associated with higher scores on psychosis positive and prodromal symptoms and general psychopathology. A more negative deviation in cortical thickness (CT) was associated with a higher general psychopathology score. Negative deviations in global FA, surface area, L1 and CT were also associated with poorer cognitive performance. No robust associations were found between the deviation scores based on CT and DTI. The low correlations between the different multimodal magnetic resonance imaging-based deviation scores suggest that psychopathological burden in adolescence can be mapped onto partly distinct neurobiological features.


Deep neural networks learn general and clinically relevant representations of the ageing brain.

  • Esten H Leonardsen‎ et al.
  • NeuroImage‎
  • 2022‎

The discrepancy between chronological age and the apparent age of the brain based on neuroimaging data - the brain age delta - has emerged as a reliable marker of brain health. With an increasing wealth of data, approaches to tackle heterogeneity in data acquisition are vital. To this end, we compiled raw structural magnetic resonance images into one of the largest and most diverse datasets assembled (n=53542), and trained convolutional neural networks (CNNs) to predict age. We achieved state-of-the-art performance on unseen data from unknown scanners (n=2553), and showed that higher brain age delta is associated with diabetes, alcohol intake and smoking. Using transfer learning, the intermediate representations learned by our model complemented and partly outperformed brain age delta in predicting common brain disorders. Our work shows we can achieve generalizable and biologically plausible brain age predictions using CNNs trained on heterogeneous datasets, and transfer them to clinical use cases.


Novel genetic loci associated with hippocampal volume.

  • Derrek P Hibar‎ et al.
  • Nature communications‎
  • 2017‎

The hippocampal formation is a brain structure integrally involved in episodic memory, spatial navigation, cognition and stress responsiveness. Structural abnormalities in hippocampal volume and shape are found in several common neuropsychiatric disorders. To identify the genetic underpinnings of hippocampal structure here we perform a genome-wide association study (GWAS) of 33,536 individuals and discover six independent loci significantly associated with hippocampal volume, four of them novel. Of the novel loci, three lie within genes (ASTN2, DPP4 and MAST4) and one is found 200 kb upstream of SHH. A hippocampal subfield analysis shows that a locus within the MSRB3 gene shows evidence of a localized effect along the dentate gyrus, subiculum, CA1 and fissure. Further, we show that genetic variants associated with decreased hippocampal volume are also associated with increased risk for Alzheimer's disease (rg=-0.155). Our findings suggest novel biological pathways through which human genetic variation influences hippocampal volume and risk for neuropsychiatric illness.


Fractionating autism based on neuroanatomical normative modeling.

  • Mariam Zabihi‎ et al.
  • Translational psychiatry‎
  • 2020‎

Autism is a complex neurodevelopmental condition with substantial phenotypic, biological, and etiologic heterogeneity. It remains a challenge to identify biomarkers to stratify autism into replicable cognitive or biological subtypes. Here, we aim to introduce a novel methodological framework for parsing neuroanatomical subtypes within a large cohort of individuals with autism. We used cortical thickness (CT) in a large and well-characterized sample of 316 participants with autism (88 female, age mean: 17.2 ± 5.7) and 206 with neurotypical development (79 female, age mean: 17.5 ± 6.1) aged 6-31 years across six sites from the EU-AIMS multi-center Longitudinal European Autism Project. Five biologically based putative subtypes were derived using normative modeling of CT and spectral clustering. Three of these clusters showed relatively widespread decreased CT and two showed relatively increased CT. These subtypes showed morphometric differences from one another, providing a potential explanation for inconsistent case-control findings in autism, and loaded differentially and more strongly onto symptoms and polygenic risk, indicating a dilution of clinical effects across heterogeneous cohorts. Our results provide an important step towards parsing the heterogeneous neurobiology of autism.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: