Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 10 papers out of 10 papers

Functional reorganization in rat somatosensory cortex assessed by fMRI: elastic image registration based on structural landmarks in fMRI images and application to spinal cord injured rats.

  • Esther Sydekum‎ et al.
  • NeuroImage‎
  • 2009‎

The accuracy at which changes in cortical functional topology can be assessed by functional MRI (fMRI) depends on the quality of the reference coordinate system used for comparison of data sets obtained in different imaging sessions. Current procedures comprise an overlay of activation clusters on registered high-resolution anatomical images. Yet, fMRI images are frequently distorted due to susceptibility artifacts, which are prominent in rodent studies due to the small dimensions involved and high magnetic field strengths used. Therefore, a procedure for co-registration of activation maps has been developed based on anatomical landmarks defined on fMR echo planar images (EPI) themselves. Validation studies in control rats revealed that the centers of activated areas in somatosensory cortex S1, evoked through sensory forepaw stimulation fell within an area of 1 x 1 mm(2) in agreement with known electrophysiological coordinates. The technique was applied to detect changes in activation patterns in rats following smaller unilateral spinal cord injuries (SCI) in their cervical segments (C3/C4) 12 weeks after lesion. Despite of an almost complete behavioral recovery, fMRI responses remained altered in SCI animals with both significantly reduced fMRI signal amplitude and reduced latency to reach the peak response. Moreover, in SCI animals the activated S1 area corresponding to the contralesional forepaw was significantly enlarged and the center-of-mass for the ipsilesional paw was shifted rostrally. The mapping technique described combined with the temporal analysis of the BOLD response enabled a noninvasive quantitative characterization of cortical functional reorganization following SCI in rats.


A novel anesthesia regime enables neurofunctional studies and imaging genetics across mouse strains.

  • Marija M Petrinovic‎ et al.
  • Scientific reports‎
  • 2016‎

Functional magnetic resonance imaging (fMRI) has revolutionized neuroscience by opening a unique window that allows neurocircuitry function and pathological alterations to be probed non-invasively across brain disorders. Here we report a novel sustainable anesthesia procedure for small animal neuroimaging that overcomes shortcomings of anesthetics commonly used in rodent fMRI. The significantly improved preservation of cerebrovascular dynamics enhances sensitivity to neural activity changes for which it serves as a proxy in fMRI readouts. Excellent cross-species/strain applicability provides coherence among preclinical findings and is expected to improve translation to clinical fMRI investigations. The novel anesthesia procedure based on the GABAergic anesthetic etomidate was extensively validated in fMRI studies conducted in a range of genetically engineered rodent models of autism and strains commonly used for transgenic manipulations. Etomidate proved effective, yielded long-term stable physiology with basal cerebral blood flow of ~0.5 ml/g/min and full recovery. Cerebrovascular responsiveness of up to 180% was maintained as demonstrated with perfusion- and BOLD-based fMRI upon hypercapnic, pharmacological and sensory stimulation. Hence, etomidate lends itself as an anesthetic-of-choice for translational neuroimaging studies across rodent models of brain disorders.


Functional MRI to assess alterations of functional networks in response to pharmacological or genetic manipulations of the serotonergic system in mice.

  • Florence Razoux‎ et al.
  • NeuroImage‎
  • 2013‎

Imaging methods that enable the investigation of functional networks both in human and animal brain provide important insights into mechanisms underlying pathologies including psychiatric disorders. Since the serotonergic receptor 1A (5-HT(1A)-R) has been strongly implicated in the pathophysiology of depressive and anxiety disorders, as well as in the action of antidepressant drugs, we investigated brain connectivity related to the 5-HT(1A)-R system by use of pharmacological functional magnetic resonance imaging in mice. We characterized functional connectivity elicited by activation of 5-HT(1A)-R and investigated how pharmacological and genetic manipulations of its function may modulate the evoked connectivity. Functional connectivity elicited by administration of the 5-HT(1A)-R agonist 8-OH-DPAT can be described by networks characterized by small-world attributes with nodes displaying highly concerted response patterns. Circuits identified comprised the brain structures known to be involved in stress-related disorders (e.g. prefrontal cortex, amygdala and hippocampus). The results also highlight the dorsomedial thalamus, a structure associated with fear processing, as a hub of the 5-HT(1A)-R functional network. Administration of a specific 5-HT(1A)-R antagonist or use of heterozygous 5-HT(1A)-R knockout mice significantly reduced functional connectivity elicited by 8-OH-DPAT. Whole brain functional connectivity analysis constitutes an attractive tool to characterize impairments in neurotransmission and the efficacy of pharmacological treatment in a comprehensive manner.


Exploring cognitive and biological correlates of sleep quality and their potential links with Alzheimer's disease (ALFASleep project): protocol for an observational study.

  • Karine Fauria‎ et al.
  • BMJ open‎
  • 2022‎

The growing worldwide prevalence of Alzheimer's disease (AD) and the lack of effective treatments pose a dire medical challenge. Sleep disruption is also prevalent in the ageing population and is increasingly recognised as a risk factor and an early sign of AD. The ALFASleep project aims to characterise sleep with subjective and objective measurements in cognitively unimpaired middle/late middle-aged adults at increased risk of AD who are phenotyped with fluid and neuroimaging AD biomarkers. This will contribute to a better understanding of the pathophysiological mechanisms linking sleep with AD, thereby paving the way for the development of non-invasive biomarkers and preventive strategies targeting sleep.


The FTD-like syndrome causing TREM2 T66M mutation impairs microglia function, brain perfusion, and glucose metabolism.

  • Gernot Kleinberger‎ et al.
  • The EMBO journal‎
  • 2017‎

Genetic variants in the triggering receptor expressed on myeloid cells 2 (TREM2) increase the risk for several neurodegenerative diseases including Alzheimer's disease and frontotemporal dementia (FTD). Homozygous TREM2 missense mutations, such as p.T66M, lead to the FTD-like syndrome, but how they cause pathology is unknown. Using CRISPR/Cas9 genome editing, we generated a knock-in mouse model for the disease-associated Trem2 p.T66M mutation. Consistent with a loss-of-function mutation, we observe an intracellular accumulation of immature mutant Trem2 and reduced generation of soluble Trem2 similar to patients with the homozygous p.T66M mutation. Trem2 p.T66M knock-in mice show delayed resolution of inflammation upon in vivo lipopolysaccharide stimulation and cultured macrophages display significantly reduced phagocytic activity. Immunohistochemistry together with in vivo TSPO small animal positron emission tomography (μPET) demonstrates an age-dependent reduction in microglial activity. Surprisingly, perfusion magnetic resonance imaging and FDG-μPET imaging reveal a significant reduction in cerebral blood flow and brain glucose metabolism. Thus, we demonstrate that a TREM2 loss-of-function mutation causes brain-wide metabolic alterations pointing toward a possible function of microglia in regulating brain glucose metabolism.


Mapping of CBV changes in 5-HT(1A) terminal fields by functional MRI in the mouse brain.

  • Thomas Mueggler‎ et al.
  • European neuropsychopharmacology : the journal of the European College of Neuropsychopharmacology‎
  • 2011‎

Visualization of brain activity in humans and animals using functional magnetic resonance imaging (fMRI) is an established method for translational neuropsychopharmacology. It is useful to study the activity of defined brain structures, however it requires further refinement to allow more specific cellular analyses, like for instance, the activity of selected pools of brain cells. Here, we investigated brain activity in serotonergic pathways in the adult mouse brain by using acute pharmacological challenge of 5-hydroxytryptamine (5-HT) 1A receptors. We show that administration of the 5-HT(1A) receptor agonist 8-OH-DPAT prompts a dose-dependent reduction in local cerebral blood volume (CBV) in brain areas rich in neurons expressing post-synaptic 5-HT(1A) receptor, including the prefrontal cortex, hippocampus and amygdalar nuclei. Region-specific inhibition of the response by co-injection of 8-OH-DPAT with the selective 5-HT(1A) receptor antagonist WAY-100635, or in 5-HT(1A) knock-out mice, suggests that 5-HT(1A) receptors are the primary targets of the agonist. Overall, the data demonstrate the feasibility of mapping region-specific serotonergic transmission in the adult mouse brain in vivo by non-invasive fMRI. The method opens novel perspectives for investigating 5-HT(1A) receptor functions in mouse models of human pathologies resulting from a dysfunction of the 5-HT(1A) receptor or the serotonergic system, including depression and anxiety.


Genetically induced adult oligodendrocyte cell death is associated with poor myelin clearance, reduced remyelination, and axonal damage.

  • Hartmut B F Pohl‎ et al.
  • The Journal of neuroscience : the official journal of the Society for Neuroscience‎
  • 2011‎

Loss of oligodendrocytes is a feature of many demyelinating diseases including multiple sclerosis. Here, we have established and characterized a novel model of genetically induced adult oligodendrocyte death. Specific primary loss of adult oligodendrocytes leads to a well defined and highly reproducible course of disease development that can be followed longitudinally by magnetic resonance imaging. Histological and ultrastructural analyses revealed progressive myelin vacuolation, in parallel to disease development that includes motor deficits, tremor, and ataxia. Myelin damage and clearance were associated with induction of oligodendrocyte precursor cell proliferation, albeit with some regional differences. Remyelination was present in the mildly affected corpus callosum. Consequences of acutely induced cell death of adult oligodendrocytes included secondary axonal damage. Microglia were activated in affected areas but without significant influx of B-cells, T-helper cells, or T-cytotoxic cells. Analysis of the model on a RAG-1 (recombination activating gene-1)-deficient background, lacking functional lymphocytes, did not change the observed disease and pathology compared with immune-competent mice. We conclude that this model provides the opportunity to study the consequences of adult oligodendrocyte death in the absence of primary axonal injury and reactive cells of the adaptive immune system. Our results indicate that if the blood-brain barrier is not disrupted, myelin debris is not removed efficiently, remyelination is impaired, and axonal integrity is compromised, likely as the result of myelin detachment. This model will allow the evaluation of strategies aimed at improving remyelination to foster axon protection.


Preserved modular network organization in the sedated rat brain.

  • Dany V D'Souza‎ et al.
  • PloS one‎
  • 2014‎

Translation of resting-state functional connectivity (FC) magnetic resonance imaging (rs-fMRI) applications from human to rodents has experienced growing interest, and bears a great potential in pre-clinical imaging as it enables assessing non-invasively the topological organization of complex FC networks (FCNs) in rodent models under normal and various pathophysiological conditions. However, to date, little is known about the organizational architecture of FCNs in rodents in a mentally healthy state, although an understanding of the same is of paramount importance before investigating networks under compromised states. In this study, we characterized the properties of resting-state FCN in an extensive number of Sprague-Dawley rats (n = 40) under medetomidine sedation by evaluating its modular organization and centrality of brain regions and tested for reproducibility. Fully-connected large-scale complex networks of positively and negatively weighted connections were constructed based on Pearson partial correlation analysis between the time courses of 36 brain regions encompassing almost the entire brain. Applying recently proposed complex network analysis measures, we show that the rat FCN exhibits a modular architecture, comprising six modules with a high between subject reproducibility. In addition, we identified network hubs with strong connections to diverse brain regions. Overall our results obtained under a straight medetomidine protocol show for the first time that the community structure of the rat brain is preserved under pharmacologically induced sedation with a network modularity contrasting from the one reported for deep anesthesia but closely resembles the organization described for the rat in conscious state.


Synaptic Regulation of a Thalamocortical Circuit Controls Depression-Related Behavior.

  • Oliver H Miller‎ et al.
  • Cell reports‎
  • 2017‎

The NMDA receptor (NMDAR) antagonist ketamine elicits a long-lasting antidepressant response in patients with treatment-resistant depression. Understanding how antagonism of NMDARs alters synapse and circuit function is pivotal to developing circuit-based therapies for depression. Using virally induced gene deletion, ex vivo optogenetic-assisted circuit analysis, and in vivo chemogenetics and fMRI, we assessed the role of NMDARs in the medial prefrontal cortex (mPFC) in controlling depression-related behavior in mice. We demonstrate that post-developmental genetic deletion of the NMDAR subunit GluN2B from pyramidal neurons in the mPFC enhances connectivity between the mPFC and limbic thalamus, but not the ventral hippocampus, and reduces depression-like behavior. Using intersectional chemogenetics, we show that activation of this thalamocortical circuit is sufficient to elicit a decrease in despair-like behavior. Our findings reveal that GluN2B exerts input-specific control of pyramidal neuron innervation and identify a medial dorsal thalamus (MDT)→mPFC circuit that controls depression-like behavior.


MRI signature in a novel mouse model of genetically induced adult oligodendrocyte cell death.

  • Thomas Mueggler‎ et al.
  • NeuroImage‎
  • 2012‎

Two general pathological processes contribute to multiple sclerosis (MS): acute inflammation and degeneration. While magnetic resonance imaging (MRI) is highly sensitive in detecting abnormalities related to acute inflammation both clinically and in animal models of experimental autoimmune encephalomyelitis (EAE), the correlation of these readouts with acute and future disabilities has been found rather weak. This illustrates the need for imaging techniques addressing neurodegenerative processes associated with MS. In the present work we evaluated the sensitivity of different MRI techniques (T(2) mapping, macrophage tracking based on labeling cells in vivo by ultrasmall particles of iron oxide (USPIO), diffusion tensor imaging (DTI) and magnetization transfer imaging (MTI)) to detect histopathological changes in a novel animal model making use of intrinsic, temporally and spatially controlled triggering of oligodendrocyte cell death. This mouse model allows studying the MRI signature associated to neurodegenerative processes of MS in the absence of adaptive inflammatory components that appear to be foremost in the EAE models. Our results revealed pronounced T(2) hyperintensities in brain stem and cerebellar structures, which we attribute to structural alteration of white matter by pronounced vacuolation. Brain areas were found devoid of significant macrophage infiltration in line with the absence of a peripheral inflammatory response. The significant decrease in diffusion anisotropy derived from DTI measures in these structures is mainly caused by a pronounced decrease in diffusivity parallel to the fiber indicative of axonal damage. Triggering of oligodendrocyte ablation did not translate into a significant increase in radial diffusivity. Only minor decreases in MT ratio have been observed, which is attributed to inefficient removal of myelin debris.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: