Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 5 papers out of 5 papers

Inhibitor of Apoptosis Proteins (IAPs) are commonly dysregulated in GIST and can be pharmacologically targeted to enhance the pro-apoptotic activity of imatinib.

  • Johanna Falkenhorst‎ et al.
  • Oncotarget‎
  • 2016‎

Gastrointestinal stromal tumors (GIST) exhibit a strong oncogenic dependency on KIT and KIT inhibitors confer long lasting disease stabilization in the majority of patients. Nonetheless, KIT inhibition alone does not cure GIST as a subset of GIST cells evade apoptosis and eventually develop resistance. Inhibitors of Apoptosis Proteins (IAPs) may confer resistance to drug-induced apoptosis. We observed that the mRNA and protein of IAPs XIAP (BIRC4) and survivin (BIRC5) were highly expressed in primary GIST tumors and cell line models. Amplification of the respective gene loci (BIRC2, BIRC3, BIRC4, BIRC5) was detected in 47% of GIST studied by SNP arrays. Whole exome analyses revealed a mutation of SMAC(DIABLO) in a heavily pretreated patient. Both, survivin (rank 62-92/11.194 tested proteins) and XIAP (rank 106-557/11.194) were found to be essential proteins for survival in a synthetic lethality screen. Expression of XIAP and survivin decreased upon KIT inhibition and may play a role in KIT-regulated pro-survival signaling. SMAC-mimetic treatment with LCL161 and TL32711 reduced cIAP1 and XIAP expression. Survivin inhibitor YM155 lead to transcriptional repression of BIRC5/survivin (YM155) and induced apoptosis. Combinational treatment with KIT inhibitors (imatinib, regorafenib) enhanced the proapoptotic effect. These findings support the combination of KIT inhibition with IAP antagonists in GIST.


ROR2 is a novel prognostic biomarker and a potential therapeutic target in leiomyosarcoma and gastrointestinal stromal tumour.

  • Badreddin Edris‎ et al.
  • The Journal of pathology‎
  • 2012‎

Soft-tissue sarcomas are a group of malignant tumours whose clinical management is complicated by morphological heterogeneity, inadequate molecular markers and limited therapeutic options. Receptor tyrosine kinases (RTKs) have been shown to play important roles in cancer, both as therapeutic targets and as prognostic biomarkers. An initial screen of gene expression data for 48 RTKs in 148 sarcomas showed that ROR2 was expressed in a subset of leiomyosarcoma (LMS), gastrointestinal stromal tumour (GIST) and desmoid-type fibromatosis (DTF). This was further confirmed by immunohistochemistry (IHC) on 573 tissue samples from 59 sarcoma tumour types. Here we provide evidence that ROR2 expression plays a role in the invasive abilities of LMS and GIST cells in vitro. We also show that knockdown of ROR2 significantly reduces tumour mass in vivo using a xenotransplantation model of LMS. Lastly, we show that ROR2 expression, as measured by IHC, predicts poor clinical outcome in patients with LMS and GIST, although it was not independent of other clinico-pathological features in a multivariate analysis, and that ROR2 expression is maintained between primary tumours and their metastases. Together, these results show that ROR2 is a useful prognostic indicator in the clinical management of these soft-tissue sarcomas and may represent a novel therapeutic target.


Genomic aberrations in cell cycle genes predict progression of KIT-mutant gastrointestinal stromal tumors (GISTs).

  • Michael C Heinrich‎ et al.
  • Clinical sarcoma research‎
  • 2019‎

Activating mutations of the receptor tyrosine kinase KIT are early events in the development of most gastrointestinal stromal tumors (GISTs). Although GISTs generally remain dependent on oncogenic KIT during tumor progression, KIT mutations alone are insufficient to induce malignant behavior. This is evidenced by KIT-mutant micro-GISTs, which are present in up to one-third of normal individuals, but virtually never progress to malignancy.


Inhibition of KIT-glycosylation by 2-deoxyglucose abrogates KIT-signaling and combination with ABT-263 synergistically induces apoptosis in gastrointestinal stromal tumor.

  • Thomas Mühlenberg‎ et al.
  • PloS one‎
  • 2015‎

Positron emission tomography (PET) with 18F-fluorodeoxyglucose (FDG) is frequently used for visualizing gastrointestinal stromal tumors (GIST), which are highly glucose-avid tumors. Dramatic metabolic responses following imatinib treatment indicate a high, KIT-dependent glucose turnover which has been particularly helpful for predicting tumor response to imatinib. The glucose analogue 2-deoxyglucose (2DG) inhibits glucose metabolism in cancer cells that depend on aerobic glycolysis for ATP production. We show that 2DG inhibits proliferation in both imatinib-sensitive and imatinib-resistant GIST cell lines at levels that can be achieved clinically. KIT-negative GIST48B have 3-14-fold higher IC50 levels than KIT-positive GIST cells indicating that oncogenic KIT may sensitize cells to 2DG. GIST sensitivity to 2DG is increased in low-glucose media (110 mg/dl). 2DG leads to dose- and glucose dependent inhibition of KIT glycosylation with resultant reduction of membrane-bound KIT, inhibition of KIT-phosphorylation and inactivation of KIT-dependent signaling intermediates. In contrast to imatinib, 2DG caused ER-stress and elicited the unfolded protein response (UPR). Mannose but not pyruvate rescued GIST cells from 2DG-induced growth arrest, suggesting that loss of KIT integrity is the predominant effect of 2DG in GIST. Additive anti-tumoral effects were seen with imatinib and BH3-mimetics. Our data provide the first evidence that modulation of the glucose-metabolism by 2DG may have a disease-specific effect and may be therapeutically useful in GIST.


p53 modulation as a therapeutic strategy in gastrointestinal stromal tumors.

  • Joern Henze‎ et al.
  • PloS one‎
  • 2012‎

The KIT-inhibitor imatinib mesylate (IM) has greatly improved the treatment of metastatic gastrointestinal stromal tumors (GIST). IM exhibits strong antiproliferative effects but fails to induce sufficient levels of apoptosis resulting in low pathologic complete remission rates and a high rate of secondary progression in the metastatic setting. Upregulation of p53 by MDM2 inhibitors has been shown to induce apoptosis in p53 wildtype tumors. Analyzing a series of 62 mostly untreated, localized and metastatic GIST we detected a low rate (3%) of inactivating p53 mutations, thus providing a rationale for further exploration of p53-directed therapeutic strategies. To this end, we studied nutlin-3, an inhibitor of the p53 antagonist MDM2, and RITA, a putative p53 activator, in GIST cell lines. Nutlin-3 effectively induced p53 at therapeutically relevant levels, which resulted in moderate antiproliferative effects and cell cycle arrest in p53 wildtype GIST cell lines GIST430, GIST48 and GIST48B. P53 reactivation substantially improved the apoptotic response after effective KIT inhibition with sunitinib and 17-AAG in IM-resistant cell lines. The commonly used imatinib-sensitive cell lines GIST882 and GIST-T1 were shown to harbor defective p53 and therefore failed to respond to nutlin-3 treatment. RITA induced p53 in GIST48B, followed by antiproliferative effects and a strong induction of apoptosis. Surprisingly, GIST-T1 was also highly sensitive to RITA despite lacking functional p53. This suggested a more complex, p53-independent mechanism of action for the latter compound. No antagonistic effects from p53-activating drugs were seen with any drug combination. Our data provide first evidence that modulation of the MDM2/p53 pathway may be therapeutically useful to improve the apoptotic response of KIT-inhibitory drugs in the treatment of naïve GIST, with p53 mutation status being a predictive factor of response.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: