Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 4 papers out of 4 papers

Tb3+-doped fluorescent glass for biology.

  • Kazuki Okamoto‎ et al.
  • Science advances‎
  • 2021‎

Optical investigation and manipulation constitute the core of biological experiments. Here, we introduce a new borosilicate glass material that contains the rare-earth ion terbium(III) (Tb3+), which emits green fluorescence upon blue light excitation, similar to green fluorescent protein (GFP), and thus is widely compatible with conventional biological research environments. Micropipettes made of Tb3+-doped glass allowed us to target GFP-labeled cells for single-cell electroporation, single-cell transcriptome analysis (Patch-seq), and patch-clamp recording under real-time fluorescence microscopic control. The glass also exhibited potent third harmonic generation upon infrared laser excitation and was usable for online optical targeting of fluorescently labeled neurons in the in vivo neocortex. Thus, Tb3+-doped glass simplifies many procedures in biological experiments.


Molecular Characterization of Superficial Layers of the Presubiculum During Development.

  • Jiayan Liu‎ et al.
  • Frontiers in neuroanatomy‎
  • 2021‎

The presubiculum, a subarea of the parahippocampal region, plays a critical role in spatial navigation and spatial representation. An outstanding aspect of presubicular spatial codes is head-direction selectivity of the firing of excitatory neurons, called head-direction cells. Head-direction selectivity emerges before eye-opening in rodents and is maintained in adulthood through neurophysiological interactions between excitatory and inhibitory neurons. Although the presubiculum has been physiologically profiled in terms of spatial representation during development, the histological characteristics of the developing presubiculum are poorly understood. We found that the expression of vesicular glutamate transporter 2 (VGluT2) could be used to delimit the superficial layers of the presubiculum, which was identified using an anterograde tracer injected into the anterior thalamic nucleus (ATN). Thus, we immunostained slices from mice ranging in age from neonates to adults using an antibody against VGluT2 to evaluate the VGluT2-positive area, which was identified as the superficial layers of the presubiculum, during development. We also immunostained the slices using antibodies against parvalbumin (PV) and somatostatin (SOM) and found that in the presubicular superficial layers, PV-positive neurons progressively increased in number during development, whereas SOM-positive neurons exhibited no increasing trend. In addition, we observed repeating patch structures in presubicular layer III from postnatal days 12. The abundant expression of VGluT2 suggests that the presubicular superficial layers are regulated primarily by VGluT2-mediated excitatory neurotransmission. Moreover, developmental changes in the densities of PV- and SOM-positive interneurons and the emergence of the VGluT2-positive patch structures during adolescence may be associated with the functional development of spatial codes in the superficial layers of the presubiculum.


GABAergic inhibition reduces the impact of synaptic excitation on somatic excitation.

  • Chiaki Kobayashi‎ et al.
  • Neuroscience research‎
  • 2019‎

The effect of excitatory synaptic input on the excitation of the cell body is believed to vary depending on where and when the synaptic activation occurs in dendritic trees and the spatiotemporal modulation by inhibitory synaptic input. However, few studies have examined how individual synaptic inputs influence the excitability of the cell body in spontaneously active neuronal networks mainly because of the lack of an appropriate method. We developed a calcium imaging technique that monitors synaptic inputs to hundreds of spines from a single neuron with millisecond resolution in combination with whole-cell patch-clamp recordings of somatic excitation. In rat hippocampal CA3 pyramidal neurons ex vivo, a fraction of the excitatory synaptic inputs were not detectable in the cell body against background noise. These synaptic inputs partially restored their somatic impact when a GABAA receptor blocker was intracellularly perfused. Thus, GABAergic inhibition reduces the influence of some excitatory synaptic inputs on the somatic excitability. Numerical simulation using a single neuron model demonstrates that the timing and locus of a dendritic GABAergic input are critical to exert this effect. Moreover, logistic regression analyses suggest that the GABAergic inputs sectionalize spine activity; that is, only some subsets of synchronous synaptic activity seemed to be preferably passed to the cell body. Thus, dendrites actively sift inputs from specific presynaptic cell assemblies.


Mesolimbic dopamine release precedes actively sought aversive stimuli in mice.

  • Yosuke Yawata‎ et al.
  • Nature communications‎
  • 2023‎

In some models, animals approach aversive stimuli more than those housed in an enriched environment. Here, we found that male mice in an impoverished and unstimulating (i.e., boring) chamber without toys sought aversive air puffs more often than those in an enriched chamber. Using this animal model, we identified the insular cortex as a regulator of aversion-seeking behavior. Activation and inhibition of the insular cortex increased and decreased the frequencies of air-puff self-stimulation, respectively, and the firing patterns of insular neuron ensembles predicted the self-stimulation timing. Dopamine levels in the ventrolateral striatum decreased with passive air puffs but increased with actively sought puffs. Around 20% of mice developed intense self-stimulation despite being offered toys, which was prevented by administering opioid receptor antagonists. This study establishes a basis for comprehending the neural underpinnings of usually avoided stimulus-seeking behaviors.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: