Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 15 papers out of 15 papers

The Highly Dynamic Nature of ERdj5 Is Key to Efficient Elimination of Aberrant Protein Oligomers through ER-Associated Degradation.

  • Ken-Ichi Maegawa‎ et al.
  • Structure (London, England : 1993)‎
  • 2017‎

ERdj5, composed of an N-terminal J domain followed by six thioredoxin-like domains, is the largest protein disulfide isomerase family member and functions as an ER-localized disulfide reductase that enhances ER-associated degradation (ERAD). Our previous studies indicated that ERdj5 comprises two regions, the N- and C-terminal clusters, separated by a linker loop and with distinct functional roles in ERAD. We here present a new crystal structure of ERdj5 with a largely different cluster arrangement relative to that in the original crystal structure. Single-molecule observation by high-speed atomic force microscopy visualized rapid cluster movement around the flexible linker loop, indicating the highly dynamic nature of ERdj5 in solution. ERdj5 mutants with a fixed-cluster orientation compromised the ERAD enhancement activity, likely because of less-efficient reduction of aberrantly formed disulfide bonds and prevented substrate transfer in the ERdj5-mediated ERAD pathway. We propose a significant role of ERdj5 conformational dynamics in ERAD of disulfide-linked oligomers.


Phosphorylation of Kif26b promotes its polyubiquitination and subsequent proteasomal degradation during kidney development.

  • Takeshi Terabayashi‎ et al.
  • PloS one‎
  • 2012‎

Kif26b, a member of the kinesin superfamily proteins (KIFs), is essential for kidney development. Kif26b expression is restricted to the metanephric mesenchyme, and its transcription is regulated by a zinc finger transcriptional regulator Sall1. However, the mechanism(s) by which Kif26b protein is regulated remain unknown. Here, we demonstrate phosphorylation and subsequent polyubiquitination of Kif26b in the developing kidney. We find that Kif26b interacts with an E3 ubiquitin ligase, neural precursor cell expressed developmentally down-regulated protein 4 (Nedd4) in developing kidney. Phosphorylation of Kif26b at Thr-1859 and Ser-1962 by the cyclin-dependent kinases (CDKs) enhances the interaction of Kif26b with Nedd4. Nedd4 polyubiquitinates Kif26b and thereby promotes degradation of Kif26b via the ubiquitin-proteasome pathway. Furthermore, Kif26b lacks ATPase activity but does associate with microtubules. Nocodazole treatment not only disrupts the localization of Kif26b to microtubules but also promotes phosphorylation and polyubiquitination of Kif26b. These results suggest that the function of Kif26b is microtubule-based and that Kif26b degradation in the metanephric mesenchyme via the ubiquitin-proteasome pathway may be important for proper kidney development.


Caenorhabditis elegans p97/CDC-48 is crucial for progression of meiosis I.

  • Yohei Sasagawa‎ et al.
  • Biochemical and biophysical research communications‎
  • 2007‎

p97/VCP/Cdc48p belongs to the AAA (ATPases associated with diverse cellular activities) family and has been indicated to be required for mitotic M-phase. We previously reported that simultaneous depletion of two p97 homologues, CDC-48.1 and CDC-48.2, in Caenorhabditis elegans caused the complete embryonic lethality, and that a large number of vacuole-like structures were observed in the dead embryos. However, cellular functions of p97 in embryogenesis have not been revealed. In this study, we analyzed effects of p97 depletion on meiotic progression. Simultaneous depletion of both p97 resulted in the formation of aberrant multinucleate cells and sometimes ectopic furrows in embryos. Importantly, meiotic chromosomes were not divided at meiotic metaphase I in p97-depleted embryos, although spindle formation and disassembly occurred. Furthermore, we found that chromosome condensation was significantly reduced in p97-depleted oocytes. Taken these results altogether, we propose that C. elegans p97 plays an important role in the progression of meiosis.


Functional characterization of UBXN-6, a C-terminal cofactor of CDC-48, in C. elegans.

  • Suman Mojumder‎ et al.
  • Biochemical and biophysical research communications‎
  • 2019‎

CDC-48 is a AAA (ATPases associated with diverse cellular activities) chaperone and participates in a wide range of cellular activities. Its functional diversity is determined by differential binding of a variety of cofactors. In this study, we analyzed the physiological role of a CDC-48 cofactor UBXN-6 in Caenorhabditis elegans. The amount of UBXN-6 was markedly increased upon starvation, but not with the treatment of tunicamycin and rapamycin. The induction upon starvation is a unique characteristic for UBXN-6 among C-terminal cofactors of CDC-48. During starvation, lysosomal activity is triggered for rapid clearance of cellular materials. We observed the lysosomal activity by monitoring GLO-1::GFP, a marker for lysosome-related organelles. We found that more puncta of GLO-1::GFP were observed in the ubxn-6 deletion mutant after 12 h starvation compared with the wild-type strain. Taken together, we propose that UBXN-6 is involved in clearance of cellular materials upon starvation in C. elegans.


Deviation of the typical AAA substrate-threading pore prevents fatal protein degradation in yeast Cdc48.

  • Masatoshi Esaki‎ et al.
  • Scientific reports‎
  • 2017‎

Yeast Cdc48 is a well-conserved, essential chaperone of ATPases associated with diverse cellular activity (AAA) proteins, which recognizes substrate proteins and modulates their conformations to carry out many cellular processes. However, the fundamental mechanisms underlying the diverse pivotal roles of Cdc48 remain unknown. Almost all AAA proteins form a ring-shaped structure with a conserved aromatic amino acid residue that is essential for proper function. The threading mechanism hypothesis suggests that this residue guides the intrusion of substrate proteins into a narrow pore of the AAA ring, thereby becoming unfolded. By contrast, the aromatic residue in one of the two AAA rings of Cdc48 has been eliminated through evolution. Here, we show that artificial retrieval of this aromatic residue in Cdc48 is lethal, and essential features to support the threading mechanism are required to exhibit the lethal phenotype. In particular, genetic and biochemical analyses of the Cdc48 lethal mutant strongly suggested that when in complex with the 20S proteasome, essential proteins are abnormally forced to thread through the Cdc48 pore to become degraded, which was not detected in wild-type Cdc48. Thus, the widely applicable threading model is less effective for wild-type Cdc48; rather, Cdc48 might function predominantly through an as-yet-undetermined mechanism.


Inhibitory effects of Myricetin derivatives on curli-dependent biofilm formation in Escherichia coli.

  • Ken-Ichi Arita-Morioka‎ et al.
  • Scientific reports‎
  • 2018‎

Biofilms are well-organised communities of microbes embedded in a self-produced extracellular matrix (e.g., curli amyloid fibers) and are associated with chronic infections. Therefore, development of anti-biofilm drugs is important to combat with these infections. Previously, we found that flavonol Myricetin inhibits curli-dependent biofilm formation by Escherichia coli (IC50 = 46.2 μM). In this study, we tested activities of seven Myricetin-derivatives to inhibit biofilm formation by E. coli K-12 in liquid culture. Among them, only Epigallocatechin gallate (EGCG), a major catechin in green tea, inhibited biofilm formation of K-12 (IC50 = 5.9 μM) more efficiently than Myricetin. Transmission electron microscopy and immunoblotting analyses demonstrated that EGCG prevented curli production by suppressing the expression of curli-related proteins. Quantitative RT-PCR analysis revealed that the transcripts of csgA, csgB, and csgD were significantly reduced in the presence of EGCG. Interestingly, the cellular level of RpoS, a stationary-phase specific alternative sigma factor, was reduced in the presence of EGCG, whereas the rpoS transcript was not affected. Antibiotic-chase experiments and genetic analyses revealed that EGCG accelerated RpoS degradation by ATP-dependent protease ClpXP in combination with its adaptor RssB. Collectively, these results provide significant insights into the development of drugs to treat chronic biofilm-associated infections.


Expression, Functional Characterization, and Preliminary Crystallization of the Cochaperone Prefoldin from the Thermophilic Fungus Chaetomium thermophilum.

  • Kento Morita‎ et al.
  • International journal of molecular sciences‎
  • 2018‎

Prefoldin is a hexameric molecular chaperone found in the cytosol of archaea and eukaryotes. Its hexameric complex is built from two related classes of subunits, and has the appearance of a jellyfish: Its body consists of a double β-barrel assembly with six long tentacle-like coiled coils protruding from it. Using the tentacles, prefoldin captures an unfolded protein substrate and transfers it to a group II chaperonin. Based on structural information from archaeal prefoldins, mechanisms of substrate recognition and prefoldin-chaperonin cooperation have been investigated. In contrast, the structure and mechanisms of eukaryotic prefoldins remain unknown. In this study, we succeeded in obtaining recombinant prefoldin from a thermophilic fungus, Chaetomium thermophilum (CtPFD). The recombinant CtPFD could not protect citrate synthase from thermal aggregation. However, CtPFD formed a complex with actin from chicken muscle and tubulin from porcine brain, suggesting substrate specificity. We succeeded in observing the complex formation of CtPFD and the group II chaperonin of C. thermophilum (CtCCT) by atomic force microscopy and electron microscopy. These interaction kinetics were analyzed by surface plasmon resonance using Biacore. Finally, we have shown the transfer of actin from CtPFD to CtCCT. The study of the folding pathway formed by CtPFD and CtCCT should provide important information on mechanisms of the eukaryotic prefoldin⁻chaperonin system.


Cyclization of Single-Chain Fv Antibodies Markedly Suppressed Their Characteristic Aggregation Mediated by Inter-Chain VH-VL Interactions.

  • Soichiro Yamauchi‎ et al.
  • Molecules (Basel, Switzerland)‎
  • 2019‎

Single-chain Fv (scFv) antibodies are recombinant proteins in which the variable regions of the heavy chain (VH) and light chain (VL) are connected by a short flexible polypeptide linker. ScFvs have the advantages of easy genetic manipulation and low-cost production using Escherichia coli compared with monoclonal antibodies, and are thus expected to be utilized as next-generation medical antibodies. However, the practical use of scFvs has been limited due to low homogeneity caused by their aggregation propensity mediated by inter-chain VH-VL interactions. Because the interactions between the VH and VL domains of antibodies are generally weak, individual scFvs are assumed to be in equilibrium between a closed state and an open state, in which the VH and VL domains are assembled and disassembled, respectively. This dynamic feature of scFvs triggers the formation of dimer, trimer, and larger aggregates caused by the inter-chain VH-VL interactions. To overcome this problem, the N-terminus and C-terminus were herein connected by sortase A-mediated ligation to produce a cyclic scFv. Open-closed dynamics and aggregation were markedly suppressed in the cyclic scFv, as judged from dynamic light scattering and high-speed atomic force microscopy analyses. Surface plasmon resonance and differential scanning fluorometry analysis revealed that neither the affinity for antigen nor the thermal stability was disrupted by the scFv cyclization. Generality was confirmed by applying the present method to several scFv proteins. Based on these results, cyclic scFvs are expected to be widely utilized in industrial and therapeutic applications.


Split conformation of Chaetomium thermophilum Hsp104 disaggregase.

  • Yosuke Inoue‎ et al.
  • Structure (London, England : 1993)‎
  • 2021‎

Hsp104 and its bacterial homolog ClpB form hexameric ring structures and mediate protein disaggregation. The disaggregated polypeptide is thought to thread through the central channel of the ring. However, the dynamic behavior of Hsp104 during disaggregation remains unclear. Here, we reported the stochastic conformational dynamics and a split conformation of Hsp104 disaggregase from Chaetomium thermophilum (CtHsp104) in the presence of ADP by X-ray crystallography, cryo-electron microscopy (EM), and high-speed atomic force microscopy (AFM). ADP-bound CtHsp104 assembles into a 65 left-handed spiral filament in the crystal structure at a resolution of 2.7 Å. The unit of the filament is a hexamer of the split spiral structure. In the cryo-EM images, staggered and split hexameric rings were observed. Further, high-speed AFM observations showed that a substrate addition enhanced the conformational change and increased the split structure's frequency. Our data suggest that split conformation is an off-pathway state of CtHsp104 during disaggregation.


Involvement of HMG-12 and CAR-1 in the cdc-48.1 expression of Caenorhabditis elegans.

  • Seiji Yamauchi‎ et al.
  • Developmental biology‎
  • 2008‎

Caenorhabditis elegans possesses two p97/VCP/Cdc48p homologues, named CDC-48.1 (C06A1.1) and CDC-48.2 (C41C4.8), and their expression patterns and levels are differently regulated. To clarify the regulatory mechanisms of differential expression of two p97 proteins of C. elegans, we performed detailed deletion analysis of their promoter regions. We found that the promoter of cdc-48.1 contains two regions necessary for embryonic and for post-embryonic expression, while the promoter of cdc-48.2 contains the single region necessary for embryonic expression. In particular, two elements (Element A and Element B) and three conserved boxes (Box a, Box b and Box c) were essential for cdc-48.1 expression in embryos and at post-embryonic stages, respectively. By using South-Western blotting and MALDI-TOF MS analysis, we identified HMG-12 and CAR-1 as proteins that bind to Element A and Element B, respectively, from the embryonic nuclear extract. Importantly, we found the decreased expression of p97 in embryos prepared from hmg-12(RNAi) or car-1(RNAi) worms. These results indicate that both HMG-12 and CAR-1 play important roles in embryonic expression of cdc-48.1.


Hierarchical Model for the Role of J-Domain Proteins in Distinct Cellular Functions.

  • Shinya Sugimoto‎ et al.
  • Journal of molecular biology‎
  • 2021‎

In Escherichia coli, the major bacterial Hsp70 system consists of DnaK, three J-domain proteins (JDPs: DnaJ, CbpA, and DjlA), and nucleotide exchange factor GrpE. JDPs determine substrate specificity for the Hsp70 system; however, knowledge on their specific role in bacterial cellular functions is limited. In this study, we demonstrated the role of JDPs in bacterial survival during heat stress and the DnaK-regulated formation of curli-extracellular amyloid fibers involved in biofilm formation. Genetic analysis demonstrate that only DnaJ is essential for survival at high temperature. On the other hand, either DnaJ or CbpA, but not DjlA, is sufficient to activate DnaK in curli production. Additionally, several DnaK mutants with reduced activity are able to complement the loss of curli production in E. coli ΔdnaK, whereas they do not recover the growth defect of the mutant strain at high temperature. Biochemical analyses reveal that DnaJ and CbpA are involved in the expression of the master regulator CsgD through the solubilization of MlrA, a DNA-binding transcriptional activator for the csgD promoter. Furthermore, DnaJ and CbpA also keep CsgA in a translocation-competent state by preventing its aggregation in the cytoplasm. Our findings support a hierarchical model wherein the role of JDPs in the Hsp70 system differs according to individual cellular functions.


Imaging of bacterial multicellular behaviour in biofilms in liquid by atmospheric scanning electron microscopy.

  • Shinya Sugimoto‎ et al.
  • Scientific reports‎
  • 2016‎

Biofilms are complex communities of microbes that attach to biotic or abiotic surfaces causing chronic infectious diseases. Within a biofilm, microbes are embedded in a self-produced soft extracellular matrix (ECM), which protects them from the host immune system and antibiotics. The nanoscale visualisation of delicate biofilms in liquid is challenging. Here, we develop atmospheric scanning electron microscopy (ASEM) to visualise Gram-positive and -negative bacterial biofilms immersed in aqueous solution. Biofilms cultured on electron-transparent film were directly imaged from below using the inverted SEM, allowing the formation of the region near the substrate to be studied at high resolution. We visualised intercellular nanostructures and the exocytosis of membrane vesicles, and linked the latter to the trafficking of cargos, including cytoplasmic proteins and the toxins hemolysin and coagulase. A thick dendritic nanotube network was observed between microbes, suggesting multicellular communication in biofilms. A universal immuno-labelling system was developed for biofilms and tested on various examples, including S. aureus biofilms. In the ECM, fine DNA and protein networks were visualised and the precise distribution of protein complexes was determined (e.g., straight curli, flagella, and excreted cytoplasmic molecular chaperones). Our observations provide structural insights into bacteria-substratum interactions, biofilm development and the internal microbe community.


Production of Single-Chain Fv Antibodies Specific for GA-Pyridine, an Advanced Glycation End-Product (AGE), with Reduced Inter-Domain Motion.

  • Natsuki Fukuda‎ et al.
  • Molecules (Basel, Switzerland)‎
  • 2017‎

Due to their lower production cost compared with monoclonal antibodies, single-chain variable fragments (scFvs) have potential for use in several applications, such as for diagnosis and treatment of a range of diseases, and as sensor elements. However, the usefulness of scFvs is limited by inhomogeneity through the formation of dimers, trimers, and larger oligomers. The scFv protein is assumed to be in equilibrium between the closed and open states formed by assembly or disassembly of VH and VL domains. Therefore, the production of an scFv with equilibrium biased to the closed state would be critical to overcome the problem in inhomogeneity of scFv for industrial or therapeutic applications. In this study, we obtained scFv clones stable against GA-pyridine, an advanced glycation end-product (AGE), by using a combination of a phage display system and random mutagenesis. Executing the bio-panning at 37 °C markedly improved the stability of scFvs. We further evaluated the radius of gyration by small-angle X-ray scattering (SAXS), obtained compact clones, and also visualized open.


Multitasking of Hsp70 chaperone in the biogenesis of bacterial functional amyloids.

  • Shinya Sugimoto‎ et al.
  • Communications biology‎
  • 2018‎

Biofilms are intricate communities of microorganisms embedded in a self-produced matrix of extracellular polymer, which provides microbes survival advantages in stressful environments and can cause chronic infections in humans. Curli are functional amyloids that assemble on the extracellular surface of enteric bacteria such as Escherichia coli during biofilm development and colonization. The molecular chaperone DnaK, a bacterial Hsp70 homologue, promotes curli biogenesis via unknown mechanism(s). Here we show that DnaK increases the expression of CsgA and CsgB-the major and minor structural components of curli, respectively-via a quantity and quality control of RpoS, a stationary phase-specific alternative sigma factor regulating bacterial transcription, and CsgD, the master transcriptional regulator of curli formation. DnaK also keeps CsgA and CsgB in a translocation-competent state by binding to their signal peptides prone to aggregation. Our findings suggest that DnaK controls the homoeostasis of curli biogenesis at multiple stages to organize the biofilm matrix.


Development of transgenic Caenorhabditis elegans expressing human transthyretin as a model for drug screening.

  • Yukimoto Tsuda‎ et al.
  • Scientific reports‎
  • 2018‎

Familial amyloid polyneuropathy is a hereditary systemic amyloidosis caused by a mutation in the transthyretin (TTR) gene. Amyloid deposits in tissues of patients contain not only full-length TTR but also C-terminal TTR fragments. However, in vivo models to evaluate the pathogenicity of TTR fragments have not yet been developed. Here, we generated transgenic Caenorhabditis elegans strains expressing several types of TTR fragments or full-length TTR fused to enhanced green fluorescent protein in the body wall muscle cells and analyzed the phenotypes of the worms. The transgenic strain expressing residues 81-127 of TTR, which included the β-strands F and H, formed aggregates and caused defective worm motility and a significantly shortened lifespan compared with other strains. These findings suggest that the C-terminal fragments of TTR may contribute to cytotoxicity of TTR amyloidosis in vivo. By using this C. elegans model system, we found that (-)-epigallocatechin-3-gallate, a major polyphenol in green tea, significantly inhibited the formation of aggregates, the defective motility, and the shortened lifespan caused by residues 81-127 of TTR. These results suggest that our newly developed C. elegans model system will be useful for in vivo pathological analyses of TTR amyloidosis as well as drug screening.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: