Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 37 papers

Prognostic value of high EZH2 expression in patients with different types of cancer: a systematic review with meta-analysis.

  • Tao Jiang‎ et al.
  • Oncotarget‎
  • 2016‎

Enhancer of zeste homologue 2 (EZH2) is a potential independent mechanism for epigenetic silencing of tumor suppressor genes in cancer. We conducted an electronic search on PubMed, EMBASE, Web of Science, and Cochrane library to perform this up-to-date meta-analysis. Fifty-one studies with a total of 9444 patients were included. The prevalence of high EZH2 expression was 0.54 (95% CI: 0.47-0.61). High EZH2 expression was significantly associated with poorer prognosis [overall survival: HR 1.54 (95% CI: 1.30-1.78), P < 0.000; disease free survival: HR 1.35 (95% CI: 1.00-1.71), P < 0.000]. In breast cancer, high EZH2 expression correlated with histological types [OR: 1.53 (95CI: 1.13-2.06); P < 0.006], histological grade [OR: 1.62 (95CI: 1.35-1.95); P < 0.000], estrogen receptor (ER) negativity [OR: 2.05 (95CI: 1.67-2.52); P < 0.000], progesterone receptor (PgR) negativity [OR: 1.42 (95CI: 1.03-1.96); P = 0.034], HER-2 positivity [OR: 1.35 (95CI: 1.08-1.69); P = 0.009], and high p53 expression [OR: 1.66 (95CI: 1.07-2.59); P = 0.024]. These results suggest that high EZH2 expression may be a promising prognostic factor to different cancers. High EZH2 expression tends to correlate with pathological types, histological grade, ER negativity, PgR negativity, HER-2 positivity and p53 high expression in breast cancer.


Co-expression modules of NF1, PTEN and sprouty enable distinction of adult diffuse gliomas according to pathway activities of receptor tyrosine kinases.

  • Wanyu Zhang‎ et al.
  • Oncotarget‎
  • 2016‎

Inter-individual variability causing elevated signaling of receptor tyrosine kinases (RTK) may have hampered the efficacy of targeted therapies. We developed a molecular signature for clustering adult diffuse gliomas based on the extent of RTK pathway activities. Glioma gene modules co-expressed with NF1 (NF1-M), Sprouty (SPRY-M) and PTEN (PTEN-M) were identified, their signatures enabled robust clustering of adult diffuse gliomas of WHO grades II-IV from five independent data sets into two subtypes with distinct activities of RAS-RAF-MEK-MAPK cascade and PI3K-AKT pathway (named RMPAhigh and RMPAlow subtypes) in a morphology-independent manner. The RMPAhigh gliomas were associated with poor prognosis compared to the RMPAlow gliomas. The RMPAhigh and RMPAlow glioma subtypes harbored unique sets of genomic alterations in the RTK signaling-related genes. The RMPAhigh gliomas were enriched in immature vessel cells and tumor associated macrophages, and both cell types expressed high levels of pro-angiogenic RTKs including MET, VEGFR1, KDR, EPHB4 and NRP1. In gliomas with major genomic lesions unrelated to RTK pathway, high RMPA signature was associated with short survival. Thus, the RMPA signatures capture RTK activities in both glioma cells and glioma microenvironment, and RTK signaling in the glioma microenvironment contributes to glioma progression.


Phosphohistone H3 (pHH3) is a prognostic and epithelial to mesenchymal transition marker in diffuse gliomas.

  • Ping Zhu‎ et al.
  • Oncotarget‎
  • 2016‎

The World Health Organization (WHO) grading of gliomas stratifies tumors by histology. However, the aggressiveness of tumors in each grade still shows great heterogeneity. Phosphohistone H3 (pHH3) has been reported as an accurate marker of cells within the mitotic phase of the cell cycle in many kinds of cancers. To evaluate the role of pHH3 in predicting patient outcome and to annotate the functions of pHH3 in WHO grade II-IV gliomas, we analyzed the expression pattern of pHH3 and pHH3 associated genes by IHC and mRNA expression profiling. Phosphohistone H3, mRNA enrichment of histone H3 and associated gene signature all showed prognostic value in adult diffuse gliomas. Gene set enrichment analysis suggested that the expression of pHH3 had positive correlation with both epithelial to mesenchymal transition and immune response. These findings suggest that subgroups of diffuse gliomas defined by pHH3 and pHH3 signatures possess distinctive prognostic and biological characteristics.


MicroRNA expression patterns in the malignant progression of gliomas and a 5-microRNA signature for prognosis.

  • Wei Yan‎ et al.
  • Oncotarget‎
  • 2014‎

MicroRNAs (miRNAs) are directly involved in the progression in various cancers. To date, no systematic researches have been performed on the expression pattern of miRNA during progression from low grade gliomas to anaplastic gliomas or secondary glioblastomas and those prognostic miRNAs in anaplastic gliomas and secondary glioblastomas. In the present study, high-throughput microarrays were used to measure miRNA expression levels in 116 samples in the different progression stages of glioma. We found that miRNA expression pattern totally altered when low grade gliomas progressed to anaplastic gliomas or secondary glioblastomas. However, anaplastic gliomas and secondary glioblastomas have similar expression pattern in miRNA level. Furthermore, we developed a five-miRNA signature (two protective miRNAs-miR-767-5p, miR-105; three risky miRNAs: miR-584, miR-296-5p and miR-196a) that could identify patients with a high risk of unfavorable outcome in anaplastic gliomas regardless of histology type. It should be highlighted that the five-miRNA signature can also identify patients who had a high risk of unfavorable outcome in secondary and TCGA Proneural glioblastomas, but not Neural, Classical and Mesenchymal glioblastomas. Taken together, our results demonstrate that miRNA expression patterns in the malignant progression of gliomas and a novel prognostic classifier, the five-miRNA signature, serve as a prognostic marker for patient risk stratification in anaplastic gliomas, Secondary and Proneural glioblastomas.


Identification of high risk anaplastic gliomas by a diagnostic and prognostic signature derived from mRNA expression profiling.

  • Chuan-Bao Zhang‎ et al.
  • Oncotarget‎
  • 2015‎

Anaplastic gliomas are characterized by variable clinical and genetic features, but there are few studies focusing on the substratification of anaplastic gliomas. To identify a more objective and applicable classification of anaplastic gliomas, we analyzed whole genome mRNA expression profiling of four independent datasets. Univariate Cox regression, linear risk score formula and receiver operating characteristic (ROC) curve were applied to derive a gene signature with best prognostic performance. The corresponding clinical and molecular information were further analyzed for interpretation of the different prognosis and the independence of the signature. Gene ontology (GO), Gene Set Variation Analysis (GSVA) and Gene Set Enrichment Analysis (GSEA) were performed for functional annotation of the differences. We found a three-gene signature, by applying which, the anaplastic gliomas could be divided into low risk and high risk groups. The two groups showed a high concordance with grade II and grade IV gliomas, respectively. The high risk group was more aggressive and complex. The three-gene signature showed diagnostic and prognostic value in anaplastic gliomas.


Genetic and clinical characteristics of primary and secondary glioblastoma is associated with differential molecular subtype distribution.

  • Rui Li‎ et al.
  • Oncotarget‎
  • 2015‎

Glioblastoma multiforme (GBM) is classified into primary (pGBM) or secondary (sGBM) based on clinical progression. However, there are some limits to this classification for insight into genetically and clinically distinction between pGBM and sGBM. The aim of this study is to characterize pGBM and sGBM associating with differential molecular subtype distribution. Whole transcriptome sequencing data was used to assess the distribution of molecular subtypes and genetic alterations in 88 pGBM and 34 sGBM in a Chinese population-based cohort, and the biological progression and prognostic impact were analyzed by combining clinical information. Forty-one percentage of pGBM were designated as Mesenchymal subtype, while only 15% were the Proneural subtype. However, sGBM displayed the opposite ratio of Mesenchymal (15%) and Proneural (44%) subtypes. Mutations in isocitrate dehydrogenase-1 (IDH1) were found to be highly concentrated in the Proneural subtypes. In addition, patients with sGBM were 10 years younger on average than those with pGBM, and exhibited clinical features of shorter overall survival and frontal lobe tumor location tendency. Furthermore, in sGBM, gene sets related to malignant progression were found to be enriched. Overall, these results reveal the intrinsic distinction between pGBM and sGBM, and provide insight into the genetic and clinical attributes of GBM.


Risk assessment models for genetic risk predictors of lung cancer using two-stage replication for Asian and European populations.

  • Yang Cheng‎ et al.
  • Oncotarget‎
  • 2017‎

In the past ten years, great successes have been accumulated by taking advantage of both candidate-gene studies and genome-wide association studies. However, limited studies were available to systematically evaluate the genetic effects for lung cancer risk with large-scale and different ethnic populations. We systematically reviewed relevant literatures and filtered out 241 important genetic variants identified in 124 articles. A two-stage case-control study within specific subgroups was performed to assess the effects [Training set: 2,331 cases vs. 3,077 controls (Chinese population); testing set: 1,937 cases vs. 1,984 controls (European population)]. Variable selection and model development were used LASSO penalized regression and genetic risk score (GRS) system. Further change in area under the receiver operator characteristic curves (AUC) made by the epidemiologic model with and without GRS was used to compare predictions. It kept 38 genetic variants in our study and the ratios of lung cancer risk for subjects in the upper quartile GRS was three times higher compared to that in the low quartile (odds ratio: 4.64, 95% CI: 3.87-5.56). In addition, we found that adding genetic predictors to smoking risk factor-only model improved lung cancer predictive value greatly: AUC, 0.610 versus 0.697 (P < 0.001). Similar performance was derived in European population and the combined two data sets. Our findings suggested that genetic predictors could improve the predictive ability of risk model for lung cancer and highlighted the application among different populations, indicating that the lung cancer risk assessment model will be a promising tool for high risk population screening and prediction.


A PTEN-COL17A1 fusion gene and its novel regulatory role in Collagen XVII expression and GBM malignance.

  • Xiaoyan Yan‎ et al.
  • Oncotarget‎
  • 2017‎

Collagen XVII expression has recently been demonstrated to be correlated with the tumor malignance. While Collagen XVII is known to be widely distributed in neurons of the human brain, its precise role in pathogenesis of glioblastoma multiforme (GBM) is unknown. In this study, we identified and characterized a new PTEN-COL17A1 fusion gene in GMB using transcriptome sequencing. Although fusion gene did not result in measurable fusion protein production, its presence is accompanied with high levels of COL17A1 expression, revealed a novel regulatory mechanism of Collagen XVII expression by PTEN-COL17A1 gene fusion. Knocked down Collagen XVII expression in glioma cell lines resulted in decreased tumor invasiveness, along with significant reduction of MMP9 expression, while increased Collagen XVII expression promotes invasive activities of glioma cells and associated with GBM recurrences. Together, our results uncovered a new PTEN-COL17A1 fusion gene and its novel regulatory role in Collagen XVII expression and GBM malignance, and demonstrated that COL17A1 could serve as a useful prognostic biomarker and therapeutic targets for GBM.


MicroRNA profiling of Chinese primary glioblastoma reveals a temozolomide-chemoresistant subtype.

  • Wei Yan‎ et al.
  • Oncotarget‎
  • 2015‎

Accumulating evidence demonstrates that defining molecular subtypes based on objective genetic alterations may permit a more rational, patient-specific approach to molecular targeted therapy across various cancers. The objective of this study was to subtype primary glioblastoma (pGBM) based on MicroRNA (miRNA) profiling in Chinese population. Here, miRNA expression profiles from 82 pGBM samples were analyzed and 78 independent pGBM samples were used for qRT-PCR validation. We found that two distinct subgroups with different prognosis and chemosensitivities to temozolomide (TMZ) in Chinese pGBM samples. One subtype is TMZ chemoresistant (termed the TCR subtype) and confers a poor prognosis. The other subtype is TMZ-chemosensitive (termed the TCS subtype) and confers a relatively better prognosis compared with the TCR subtype. A classifier consisting of seven miRNAs was then identified (miR-1280, miR-1238, miR-938 and miR-423-5p (overexpressed in the TCR subtype); and let-7i, miR-151-3p and miR-93 (downregulated in the TCR subtype)), which could be used to assign pGBM samples to the corresponding subtype. The classifier was validated using both internal and external samples. Meanwhile, the genetic alterations of the TCR and TCS subtypes were also analyzed. The TCR subtype was characterized by no IDH1 mutation, and EGFR and Ki-67 overexpression. The TCS subtype displayed the opposite situation. Taken together, the results indicate a distinct subgroup with poor prognosis and TMZ-chemoresistance.


PAK6 increase chemoresistance and is a prognostic marker for stage II and III colon cancer patients undergoing 5-FU based chemotherapy.

  • Jian Chen‎ et al.
  • Oncotarget‎
  • 2015‎

p21-Activated kinase 6 (PAK6) has been implicated in radiotherapy and docetaxel resistance. We have further evaluated PAK6 as a predictor of 5-fluorouracil (5-FU) treatment response in colon cancer. Here we report that in colon cancer PAK6 promotes tumor progression and chemoresistance both in vitro and in vivo. In the clinical analysis, PAK6 was overexpressed in 104 of 147 (70.75%) stage II and III patients who received 5-FU based chemotherapy after surgery. Multivariate Cox regression analysis indicated that PAK6 was an independent prognostic factor for overall survival (P < 0.001) and disease-free survival (P < 0.001). Colon cancer cell lines showed increased PAK6 expression upon 5-FU treatment. In PAK6-knockdown cells treated with 5-FU, cell viability and phosphorylation of BAD decreased, and the number of apoptotic cells, levels of cleaved caspase 3 and PARP increased compared to control cells. The opposite was observed in PAK6 overexpressing cells. Short hairpin RNA knockdown of PAK6 blocked cells in G2-M phase. Furthermore, Animal experiments results in vivo are consistent with outcomes in vitro. This study demonstrates that PAK6 is an independent prognostic factor for adjuvant 5-FU-based chemotherapy in patients with stage II and stage III colon cancer.


EGFRvIII/integrin β3 interaction in hypoxic and vitronectinenriching microenvironment promote GBM progression and metastasis.

  • Zhaoyu Liu‎ et al.
  • Oncotarget‎
  • 2016‎

Glioblastoma (GBM) is one of the most lethal brain tumors with a short survival time. EGFR amplification and mutation is the most significant genetic signature in GBM. About half of the GBMs with EGFR amplification express a constitutively autophosphorylated variant of EGFR, known as EGFRvIII. Our in vitro data demonstrated further enhanced EGFRvIII activity and tumor cell invasion in the tumor microenvironment of hypoxia plus extracellular matrix (ECM) vitronectin, in which EGFRvIII and integrin β3 tended to form complexes. The treatment with ITGB3 siRNA or the integrin antagonist cilengetide preferentially interrupted the EGFRvIII/integrin β3 complex, effectively reduced tumor cell invasion and activation of downstream signaling effectors. Cilengitide is recently failed in Phase III CENTRIC trial in unselected patients with GBM. However, we found that cilengitide demonstrated efficacious tumor regression via inhibition of tumor growth and angiogenesis in EGFRvIII orthotopic xenografts. Bioinformatics analysis emphasized key roles of integrin β3, hypoxia and vitronectin and their strong correlations with EGFRvIII expression in malignant glioma patient samples in vivo. In conclusion, we demonstrate that EGFRvIII/integrin β3 complexes promote GBM progression and metastasis in the environment of hypoxia and vitronectin-enrichment, and cilengitide may serve as a promising therapeutics for EGFRvIII-positive GBMs.


The chromatin-remodeling enzyme BRG1 promotes colon cancer progression via positive regulation of WNT3A.

  • Shengtao Lin‎ et al.
  • Oncotarget‎
  • 2016‎

In this study, we aimed to elucidate the clinical significance and underlying mechanisms of BRG1 in colon cancer. In the clinical analysis, overexpression of BRG1 correlates with colon cancer progression in two cohorts (n = 191 and n = 75). Kaplan-Meier survival analysis revealed that BRG1 is a prognosis predictor for overall survival (P < 0.001) and disease-free survival (P = 0.001). Knocking down BRG1 expression significantly suppressed the proliferation and invasion in colon cancer cells. The expression pattern of WNT3A is consistent with BRG1 in colon cancer tissues and WNT3A expression was inhibited in BRG1 knockdown cells. In addition, restoring WNT3A expression rescues the inhibition of cell proliferation and invasion induced by BRG1. In this study, we demonstrate that BRG1 may contribute to colon cancer progression through upregulating WNT3A expression.


Epigenetic suppression of EGFR signaling in G-CIMP+ glioblastomas.

  • Jie Li‎ et al.
  • Oncotarget‎
  • 2014‎

The intrinsic signaling cascades and cell states associated with the Glioma CpG Island Methylator Phenotype (G-CIMP) remain poorly understood. Using published mRNA signatures associated with EGFR activation, we demonstrate that G-CIMP+ tumors harbor decreased EGFR signaling using three independent datasets, including the Chinese Glioma Genome Atlas(CGGA; n=155), the REMBRANDT dataset (n=288), and The Cancer Genome Atlas (TCGA; n=406). Additionally, an independent collection of 25 fresh-frozen glioblastomas confirmed lowered pERK levels in G-CIMP+ specimens (p<0.001), indicating suppressed EGFR signaling. Analysis of TCGA glioblastomas revealed that G-CIMP+ glioblastomas harbored lowered mRNA levels for EGFR and H-Ras. Induction of G-CIMP+ state by exogenous expression of a mutated isocitrate dehydrogenase 1, IDH1-R132H, suppressed EGFR and H-Ras protein expression as well as pERK accumulation in independent glioblastoma models. These suppressions were associated with increased deposition of the repressive histone markers, H3K9me3 and H3K27me3, in the EGFR and H-Ras promoter regions. The IDH1-R132H expression-induced pERK suppression can be reversed by exogenous expression of H-RasG12V. Finally, the G-CIMP+ Ink4a-Arf-/- EGFRvIII glioblastoma line was more resistant to the EGFR inhibitor, Gefitinib, relative to its isogenic G-CIMP- counterpart. These results suggest that G-CIMP epigenetically regulates EGFR signaling and serves as a predictive biomarker for EGFR inhibitors in glioblastoma patients.


A genome-wide miRNA screen revealed miR-603 as a MGMT-regulating miRNA in glioblastomas.

  • Deepa Kushwaha‎ et al.
  • Oncotarget‎
  • 2014‎

MGMT expression is a critical determinant for therapeutic resistance to DNA alkylating agents. We previously demonstrated that MGMT expression is post-transcriptionally regulated by miR-181d and other miRNAs. Here, we performed a genome-wide screen to identify MGMT regulating miRNAs. Candidate miRNAs were further tested for inverse correlation with MGMT expression in clinical specimens. We identified 15 candidate miRNAs and characterized the top candidate, miR-603. Transfection of miR-603 suppressed MGMT mRNA/protein expression in vitro and in vivo; this effect was reversed by transfection with antimiR-603. miR-603 affinity-precipitated with MGMT mRNA and suppressed luciferase activity in an MGMT-3'UTR-luciferase assay, suggesting direct interaction between miR-603 and MGMT 3'UTR. miR-603 transfection enhanced the temozolomide (TMZ) sensitivity of MGMT-expressing glioblastoma cell lines. Importantly, miR-603 mediated MGMT suppression and TMZ resistance were reversed by expression of an MGMT cDNA. In a collection of 74 clinical glioblastoma specimens, both miR-603 and miR-181d levels inversely correlated with MGMT expression. Moreover, a combined index of the two miRNAs better reflected MGMT expression than each individually. These results suggest that MGMT is co-regulated by independent miRNAs. Characterization of these miRNAs should contribute toward strategies for enhancing the efficacy of DNA alkylating agents.


MicroRNA-301a-3p promotes pancreatic cancer progression via negative regulation of SMAD4.

  • Xiang Xia‎ et al.
  • Oncotarget‎
  • 2015‎

Aim to determine the clinicopathological and prognostic role of miR-301a-3p in pancreatic ductal adenocarcinoma(PDAC), to investigate the biological mechanism of miR-301a-3p in vitro and in vivo.


Multidimensional analysis of gene expression reveals TGFB1I1-induced EMT contributes to malignant progression of astrocytomas.

  • Yanwei Liu‎ et al.
  • Oncotarget‎
  • 2014‎

Malignant progression of astrocytoma is a multistep process with the integration of genetic abnormalities including grade progression and subtypes transition. Established biomarkers of astrocytomas, like IDH1 and TP53 mutation, were not associated with malignant progression. To identify new biomarker(s) contributing to malignant progression, we collected 252 samples with whole genome mRNA expression profile [34 normal brain tissue (NBT), 136 grade II astrocytoma (AII) and 82 grade III astrocytoma (AIII)]. Bioinformatics analysis revealed that EMT-associated pathways were most significantly altered along with tumor grades progress with up-regulation of 17 genes. Up-regulation of these genes was further confirmed by RNA-sequencing in 128 samples. Survival analysis revealed that high expression of these genes indicates a poor survival outcome. We focused on TGFB1I1 (TGF-β1 induced transcript 1) whose expression correlation with WHO grades was further validated by qPCR in 6 cell lines of different grades and 49 independent samples (36 AIIs and 13 AIIIs). High expression of TGFB1I1 was found associated with subtype transition and EMT pathways activation. The conclusion was confirmed using immunohistochemistry in tissue microarrays. Studies in vitro and in vivo using TGF-β1 and TGFB1I1 shRNA demonstrated that TGFB1I1 is required for TGF-β stimulated EMT that contributes to malignant progression of astrocytomas.


HOTAIR is a therapeutic target in glioblastoma.

  • Xuan Zhou‎ et al.
  • Oncotarget‎
  • 2015‎

HOTAIR is a negative prognostic factor and is overexpressed in multiple human cancers including glioblastoma multiform (GBM). Survival analysis of Chinese Glioma Genome Atlas (CGGA) patient data indicated that high HOTAIR expression was associated with poor outcome in GBM patients. NLK (Nemo-like kinase), a negative regulator of the β-catenin pathway, was negatively correlated with HOTAIR expression. When the β-catenin pathway was inhibited, GBM cells became susceptible to cell cycle arrest and inhibition of invasion. Introduction of the HOTAIR 5' domain in human glioma-derived astrocytoma induced β-catenin. An intracranial animal model was used to confirm that HOTAIR depletion inhibited GBM cell migration/invasion. In the orthotopic model, HOTAIR was required for GBM formation in vivo. In summary, HOTAIR is a potential therapeutic target in GBM.


Co-expression of Lgr5 and CXCR4 characterizes cancer stem-like cells of colorectal cancer.

  • Weidong Wu‎ et al.
  • Oncotarget‎
  • 2016‎

Therapies designed to target cancer stem cells (CSCs) in colorectal cancer (CRC) may improve treatment outcomes. Different markers have been used to identify CSCs or CSC-like cells in CRC, but the enrichment of CSCs using these markers has yet to be optimized. We recently reported the importance of Lgr5-positive CRC cells in cancer growth. Here, we studied the possibility of using Lgr5 and CXCR4 as CSC markers for CRC. We detected high Lgr5 and CXCR4 levels in stage IV CRC specimens. Both high Lgr5 and CXCR4 levels were associated with poor prognosis in stage IV CRC patients. In vitro, Lgr5+CXCR4-, CXCR4+Lgr5- and Lgr5+CXCR4+ cells were purified in human CRC cell lines and examined for their CSC properties. We found that compared to the unsorted cells, CXCR4+Lgr5-, Lgr5+CXCR4-, and Lgr5+/CXCR4+ cells showed significantly greater cancer mass after subcutaneous transplantation, greater tumor sphere formation, higher resistance to chemotherapy, and higher incidence of tumor formation after serial adoptive transplantation into NOD/SCID mice. Taken together, our data suggest that the combined use of Lgr5 and CXCR4 may facilitate the enrichment of CSCs in CRC, and that treating Lgr5+/CXCR4+ CRC cells may improve the outcome of CRC therapy.


Lapatinib-loaded human serum albumin nanoparticles for the prevention and treatment of triple-negative breast cancer metastasis to the brain.

  • Xu Wan‎ et al.
  • Oncotarget‎
  • 2016‎

Brain metastasis from triple-negative breast cancer (TNBC) has continued to lack effective clinical treatments until present. However, the feature of epidermal growth factor receptor (EGFR) frequently overexpressed in TNBC offers the opportunity to employ lapatinib, a dual-tyrosine kinase inhibitor of human epidermal growth factor receptor-2 (HER2) and EGFR, in the treatment of brain metastasis of TNBC. Unfortunately, the low oral bioavailability of lapatinib and drug efflux by blood-brain barrier have resulted in low drug delivery efficiency into the brain and limited therapeutic effects for patients with brain metastasis in clinical trials. To overcome such disadvantages, we developed lapatinib-loaded human serum albumin (HSA) nanoparticles, named LHNPs, by modified nanoparticle albumin-bound (Nab) technology. LHNPs had a core-shell structure and the new HSA/phosphatidylcholine sheath made LHNPs stable in bloodstream. Compared to free lapatinib, LHNPs could inhibit the adhesion, migration and invasion ability of high brain-metastatic 4T1 cells more effectively in vitro. Tissue distribution following intravenous administration revealed that LHNPs (i.v., 10 mg/kg) achieved increased delivery to the metastatic brain at 5.43 and 4.36 times the levels of Tykerb (p.o., 100 mg/kg) and lapatinib solution (LS, i.v., 10 mg/kg), respectively. Compared to the marketed Tykerb group, LHNPs had markedly better inhibition effects on brain micrometastasis and significantly extended the median survival time of 4T1 brain metastatic mice in consequence. The improved anti-tumor efficacy of LHNPs could be partly ascribed to down-regulating metastasis-related proteins. Therefore, these results clearly indicated that LHNPs could become a promising candidate for clinical applications against brain metastasis of TNBC.


Predictive and prognostic value of folate receptor-positive circulating tumor cells in small cell lung cancer patients treated with first-line chemotherapy.

  • Jiqiao Shen‎ et al.
  • Oncotarget‎
  • 2017‎

To assess the predictive and prognostic significance of folate receptor (FR)-positive circulating tumor cells (CTCs) in patients with small cell lung cancer (SCLC) received first-line chemotherapy. Eligible patients with chemotherapy-naïve, unresectable SCLC were enrolled and blood samples were collected. CTCs were enumerated using ligand-targeted polymerase chain reaction (LT-PCR) at baseline, after two cycles of chemotherapy regimen and on disease progression. In total, 80 patients were enrolled and 67 (83.8%) had positive CTC count at baseline (CTCs ≥ 8.7 FU/3mL). The baseline CTC counts in patients with partial response (PR) were significantly higher than those with progression disease (PD) (P = 0.0365). An obvious reduction of CTC enumeration after two cycles of chemotherapy was significantly correlated with PR (P = 0.0380), instead of SD (P = 0.4934). Among positive CTC count group, patients with relative low CTC level had significantly longer progression-free survival (PFS) and overall survival (OS) than those with high CTC level (PFS: 9.1 vs 6.9 months, P = 0.0458; OS: 11.1 vs 8.6 months, P = 0.056). In multivariate analysis, distant metastases (HR = 1.466, P = 0.021) and relative low CTC level (HR = 0.656, P = 0.049) were the independent predictive factors for patients with SCLC received first-line chemotherapy. The present results demonstrated that baseline CTC counts could be the valuable predictive and prognostic biomarker for patients with SCLC received first-line chemotherapy. The reduction of CTC enumeration after two cycles of chemotherapy was a potential predictor of chemotherapeutic response in SCLC.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: