Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 6 papers out of 6 papers

Protein crosslinking by transglutaminase controls cuticle morphogenesis in Drosophila.

  • Toshio Shibata‎ et al.
  • PloS one‎
  • 2010‎

Transglutaminase (TG) plays important and diverse roles in mammals, such as blood coagulation and formation of the skin barrier, by catalyzing protein crosslinking. In invertebrates, TG is known to be involved in immobilization of invading pathogens at sites of injury. Here we demonstrate that Drosophila TG is an important enzyme for cuticle morphogenesis. Although TG activity was undetectable before the second instar larval stage, it dramatically increased in the third instar larval stage. RNA interference (RNAi) of the TG gene caused a pupal semi-lethal phenotype and abnormal morphology. Furthermore, TG-RNAi flies showed a significantly shorter life span than their counterparts, and approximately 90% of flies died within 30 days after eclosion. Stage-specific TG-RNAi before the third instar larval stage resulted in cuticle abnormality, but the TG-RNAi after the late pupal stage did not, indicating that TG plays a key role at or before the early pupal stage. Immediately following eclosion, acid-extractable protein from wild-type wings was nearly all converted to non-extractable protein due to wing maturation, whereas several proteins remained acid-extractable in the mature wings of TG-RNAi flies. We identified four proteins--two cuticular chitin-binding proteins, larval serum protein 2, and a putative C-type lectin-as TG substrates. RNAi of their corresponding genes caused a lethal phenotype or cuticle abnormality. Our results indicate that TG-dependent protein crosslinking in Drosophila plays a key role in cuticle morphogenesis and sclerotization.


Influenza A virus M2 protein triggers mitochondrial DNA-mediated antiviral immune responses.

  • Miyu Moriyama‎ et al.
  • Nature communications‎
  • 2019‎

Cytosolic mitochondrial DNA (mtDNA) activates cGAS-mediated antiviral immune responses, but the mechanism by which RNA viruses stimulate mtDNA release remains unknown. Here we show that viroporin activity of influenza virus M2 or encephalomyocarditis virus (EMCV) 2B protein triggers translocation of mtDNA into the cytosol in a MAVS-dependent manner. Although influenza virus-induced cytosolic mtDNA stimulates cGAS- and DDX41-dependent innate immune responses, the nonstructural protein 1 (NS1) of influenza virus associates with mtDNA to evade the STING-dependent antiviral immunity. The STING-dependent antiviral signaling is amplified in neighboring cells through gap junctions. In addition, we find that STING-dependent recognition of influenza virus is essential for limiting virus replication in vivo. Our results show a mechanism by which influenza virus stimulates mtDNA release and highlight the importance of DNA sensing pathway in limiting influenza virus replication.


RLR-mediated antiviral innate immunity requires oxidative phosphorylation activity.

  • Takuma Yoshizumi‎ et al.
  • Scientific reports‎
  • 2017‎

Mitochondria act as a platform for antiviral innate immunity, and the immune system depends on activation of the retinoic acid-inducible gene I (RIG-I)-like receptors (RLR) signaling pathway via an adaptor molecule, mitochondrial antiviral signaling. We report that RLR-mediated antiviral innate immunity requires oxidative phosphorylation (OXPHOS) activity, a prominent physiologic function of mitochondria. Cells lacking mitochondrial DNA or mutant cells with respiratory defects exhibited severely impaired virus-induced induction of interferons and proinflammatory cytokines. Recovery of the OXPHOS activity in these mutants, however, re-established RLR-mediated signal transduction. Using in vivo approaches, we found that mice with OXPHOS defects were highly susceptible to viral infection and exhibited significant lung inflammation. Studies to elucidate the molecular mechanism of OXPHOS-coupled immune activity revealed that optic atrophy 1, a mediator of mitochondrial fusion, contributes to regulate the antiviral immune response. Our findings provide evidence for functional coordination between RLR-mediated antiviral innate immunity and the mitochondrial energy-generating system in mammals.


MAVS is energized by Mff which senses mitochondrial metabolism via AMPK for acute antiviral immunity.

  • Yuki Hanada‎ et al.
  • Nature communications‎
  • 2020‎

Mitochondria are multifunctional organelles that produce energy and are critical for various signaling pathways. Mitochondrial antiviral signaling (MAVS) is a mitochondrial outer membrane protein essential for the anti-RNA viral immune response, which is regulated by mitochondrial dynamics and energetics; however, the molecular link between mitochondrial metabolism and immunity is unclear. Here we show in cultured mammalian cells that MAVS is activated by mitochondrial fission factor (Mff), which senses mitochondrial energy status. Mff mediates the formation of active MAVS clusters on mitochondria, independent of mitochondrial fission and dynamin-related protein 1. Under mitochondrial dysfunction, Mff is phosphorylated by the cellular energy sensor AMP-activated protein kinase (AMPK), leading to the disorganization of MAVS clusters and repression of the acute antiviral response. Mff also contributes to immune tolerance during chronic infection by disrupting the mitochondrial MAVS clusters. Taken together, Mff has a critical function in MAVS-mediated innate immunity, by sensing mitochondrial energy metabolism via AMPK signaling.


A structural perspective of the MAVS-regulatory mechanism on the mitochondrial outer membrane using bioluminescence resonance energy transfer.

  • Osamu Sasaki‎ et al.
  • Biochimica et biophysica acta‎
  • 2013‎

In most eukaryotic cells, mitochondria have various essential roles for proper cell function, such as energy production, and in mammals mitochondria also act as a platform for antiviral innate immunity. Mitochondrial-mediated antiviral immunity depends on the activation of the cytoplasmic retinoic acid-inducible gene I (RIG-I)-like receptors (RLRs) signaling pathway, and on the participation of mitochondrial antiviral signaling (MAVS), which is localized on the mitochondrial outer membrane. After RNA virus infection, RLRs translocate to the mitochondrial surface to interact with MAVS, and the adaptor protein undergoes a conformational change that is essential for downstream signaling, although its structural features are poorly understood. Here we examined the MAVS-regulatory mechanism on the mitochondrial outer membrane using bioluminescence resonance energy transfer (BRET) in live cells. Using a combination of BRET and functional analysis, we found that the activated MAVS conformation is a highly ordered oligomer, at least more than three molecules per complex unit on the membrane. Hepatitis C virus NS3/4A protease and mitofusin 2, which are known MAVS inhibitors, interfere with MAVS homotypic oligomerization in a distinct manner, each differentially altering the active conformation of MAVS. Our results reveal structural features underlying the precise regulation of MAVS signaling on the mitochondrial outer membrane, and may provide insight into other signaling systems involving organelles.


Herpes Simplex Virus 1 VP22 Inhibits AIM2-Dependent Inflammasome Activation to Enable Efficient Viral Replication.

  • Yuhei Maruzuru‎ et al.
  • Cell host & microbe‎
  • 2018‎

The AIM2 inflammasome is activated by DNA, leading to caspase-1 activation and release of pro-inflammatory cytokines interleukin 1β (IL-1β) and IL-18, which are critical mediators in host innate immune responses against various pathogens. Some viruses employ strategies to counteract inflammasome-mediated induction of pro-inflammatory cytokines, but their in vivo relevance is less well understood. Here we show that the herpes simplex virus 1 (HSV-1) tegument protein VP22 inhibits AIM2-dependent inflammasome activation. VP22 interacts with AIM2 and prevents its oligomerization, an initial step in AIM2 inflammasome activation. A mutant virus lacking VP22 (HSV-1ΔVP22) activates AIM2 and induces IL-1β and IL-18 secretion, but these responses are lost in the absence of AIM2. Additionally, HSV-1ΔVP22 infection results in diminished viral yields in vivo, but HSV-1ΔVP22 replication is largely restored in AIM2-deficient mice. Collectively, these findings reveal a mechanism of HSV-1 evasion of the host immune response that enables efficient viral replication in vivo.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: