Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 53 papers

Enhanced interleukin (IL)-13 responses in mice lacking IL-13 receptor alpha 2.

  • Nancy Wood‎ et al.
  • The Journal of experimental medicine‎
  • 2003‎

Interleukin (IL)-13 has recently been shown to play important and unique roles in asthma, parasite immunity, and tumor recurrence. At least two distinct receptor components, IL-4 receptor (R)alpha and IL-13Ralpha1, mediate the diverse actions of IL-13. We have recently described an additional high affinity receptor for IL-13, IL-13Ralpha2, whose function in IL-13 signaling is unknown. To better appreciate the functional importance of IL-13Ralpha2, mice deficient in IL-13Ralpha2 were generated by gene targeting. Serum immunoglobulin E levels were increased in IL-13Ralpha2-/- mice despite the fact that serum IL-13 was absent and immune interferon gamma production increased compared with wild-type mice. IL-13Ralpha2-deficient mice display increased bone marrow macrophage progenitor frequency and decreased tissue macrophage nitric oxide and IL-12 production in response to lipopolysaccharide. These results are consistent with a phenotype of enhanced IL-13 responsiveness and demonstrate a role for endogenous IL-13 and IL-13Ralpha2 in regulating immune responses in wild-type mice.


Procyanidins and butanol extract of Cinnamomi Cortex inhibit SARS-CoV infection.

  • Min Zhuang‎ et al.
  • Antiviral research‎
  • 2009‎

We found that the butanol fraction of Cinnamomi Cortex (CC/Fr.2) showed moderate inhibitory activity in wild-type severe acute respiratory syndrome coronavirus (wtSARS-CoV) and HIV/SARS-CoV S pseudovirus infections. The inhibition on pseudovirus was also seen in cells pretreated with the CC and CC/Fr.2 (IC(50S), 283.4+/-16.3 and 149.5+/-13.5 microg/ml, respectively), however the highest activities on wtSARS-CoV were observed when the viruses were treated by the extracts before challenging (IC(50S), 43.1+/-2.8 and 7.8+/-0.3 microg/ml; SIs, 8.4 and 23.1, respectively). Among the compounds fractionated from CC, procyanidin A2 and procyanidin B1 showed moderate anti-wtSARS-CoV activity (IC(50S), 29.9+/-3.3 and 41.3+/-3.4 microM; SIs, 37.35 and 15.69, respectively). We also sought to determine whether they could interfere with the clathrin-dependent endocytosis pathway using transferrin receptor (TfR) as an indicator. CC/Fr.2 inhibited the internalization of TfR but the procyanidins did not. Taken together, CC/Fr.2 contains unknown substances, that could inhibit the infection, probably by interfering with endocytosis, and it also contains procyanidins that did not inhibit the internalization but inhibited the infection. Therefore, CC extracts contain anti-virus activities that act through distinct mechanisms according to differences in the compounds or mixtures.


Efficacy and safety of sitagliptin in Japanese patients with type 2 diabetes switched from glinides.

  • Tsuyoshi Tanaka‎ et al.
  • Journal of diabetes investigation‎
  • 2014‎

The efficacy and safety of sitagliptin, a dipeptidyl peptidase (DPP)-4 inhibitor, were compared with those of glinides in Japanese patients with type 2 diabetes.


Anti-wrinkle effect of magnesium lithospermate B from Salvia miltiorrhiza BUNGE: inhibition of MMPs via NF-kB signaling.

  • Yu Ri Jung‎ et al.
  • PloS one‎
  • 2014‎

Skin is in direct contact with the environment and therefore undergoes aging as a consequence of environmentally induce damage. Wrinkle formation is a striking feature of intrinsic and photo-induced skin aging, which are both associated with oxidative stress and inflammatory response. The present study was undertaken to identify the mechanisms responsible for the anti-wrinkle effects of MLB, and thus, we investigated whether magnesium lithospermate B (MLB) from Salvia miltiorrhiza BUNGE associated with wrinkle formation caused by intrinsic and extrinsic skin aging using Sprague-Dawley rats aged 5 and 20 months and ultraviolet B (UVB)-irradiated human skin fibroblasts cells, respectively. The results obtained showed that the oral administration of MLB significantly upregulated the level of type I procollagen and downregulated the activities and expressions of matrix-metalloproteinases (MMPs) in rat skin. In fibroblasts, MLB suppressed the transactivation of nuclear factor-kB (NF-kB) and activator protein 1(AP-1), which are the two transcription factors responsible for MMP expression, by suppressing oxidative stress and the mitogen activated protein kinase (MAPK) pathway. Our results show that the antioxidant effect of MLB is due to the direct scavenging of reactive oxygen species (ROS) and its inhibitory effects on NF-kB-dependent inflammation genes, such as, cyclooxygenase-2 and inducible nitric oxide synthase. MLB was found to reverse both age- and UVB-related reductions in skin procollagen levels by suppressing the expressions and activities of NF-kB and AP-1-dependent MMPs by modulating ROS generation and the MAPK signaling pathway. We suggest that MLB potentially has anti-wrinkle and anti-skin aging effects.


An interplay of NOX1-derived ROS and oxygen determines the spermatogonial stem cell self-renewal efficiency under hypoxia.

  • Hiroko Morimoto‎ et al.
  • Genes & development‎
  • 2021‎

Reactive oxygen species (ROS) produced by NADPH1 oxidase 1 (NOX1) are thought to drive spermatogonial stem cell (SSC) self-renewal through feed-forward production of ROS by the ROS-BCL6B-NOX1 pathway. Here we report the critical role of oxygen on ROS-induced self-renewal. Cultured SSCs proliferated poorly and lacked BCL6B expression under hypoxia despite increase in mitochondria-derived ROS. Due to lack of ROS amplification under hypoxia, NOX1-derived ROS were significantly reduced, and Nox1-deficient SSCs proliferated poorly under hypoxia but normally under normoxia. NOX1-derived ROS also influenced hypoxic response in vivo because Nox1-deficient undifferentiated spermatogonia showed significantly reduced expression of HIF1A, a master transcription factor for hypoxic response. Hypoxia-induced poor proliferation occurred despite activation of MYC and suppression of CDKN1A by HIF1A, whose deficiency exacerbated self-renewal efficiency. Impaired proliferation of Nox1- or Hif1a-deficient SSCs under hypoxia was rescued by Cdkn1a depletion. Consistent with these observations, Cdkn1a-deficient SSCs proliferated actively only under hypoxia but not under normoxia. On the other hand, chemical suppression of mitochondria-derived ROS or Top1mt mitochondria-specific topoisomerase deficiency did not influence SSC fate, suggesting that NOX1-derived ROS play a more important role in SSCs than mitochondria-derived ROS. These results underscore the importance of ROS origin and oxygen tension on SSC self-renewal.


A pH-Adjustable Tissue Clearing Solution That Preserves Lipid Ultrastructures: Suitable Tissue Clearing Method for DDS Evaluation.

  • Shintaro Fumoto‎ et al.
  • Pharmaceutics‎
  • 2020‎

Visualizing biological events and states to resolve biological questions is challenging. Tissue clearing permits three-dimensional multicolor imaging. Here, we describe a pH-adjustable tissue clearing solution, Seebest (SEE Biological Events and States in Tissues), which preserves lipid ultrastructures at an electron microscopy level. Adoption of polyethylenimine was required for a wide pH range adjustment of the tissue clearing solution. The combination of polyethylenimine and urea had a good tissue clearing ability for multiple tissues within several hours. Blood vessels stained with lipophilic carbocyanine dyes were deeply visible using the solution. Adjusting the pH of the solution was important to maximize the fluorescent intensity and suppress dye leakage during tissue clearing. The spatial distribution of doxorubicin and oxidative stress were observable using the solution. Moreover, spatial distribution of liposomes in the liver was visualized. Hence, the Seebest solution provides pH-adjustable, rapid, sufficient tissue clearing, while preserving lipid ultrastructures, which is suitable for drug delivery system evaluations.


The ATF6β-calreticulin axis promotes neuronal survival under endoplasmic reticulum stress and excitotoxicity.

  • Dinh Thi Nguyen‎ et al.
  • Scientific reports‎
  • 2021‎

While ATF6α plays a central role in the endoplasmic reticulum (ER) stress response, the function of its paralogue ATF6β remains elusive, especially in the central nervous system (CNS). Here, we demonstrate that ATF6β is highly expressed in the hippocampus of the brain, and specifically regulates the expression of calreticulin (CRT), a molecular chaperone in the ER with a high Ca2+-binding capacity. CRT expression was reduced to ~ 50% in the CNS of Atf6b-/- mice under both normal and ER stress conditions. Analysis using cultured hippocampal neurons revealed that ATF6β deficiency reduced Ca2+ stores in the ER and enhanced ER stress-induced death. The higher levels of death in Atf6b-/- neurons were recovered by ATF6β and CRT overexpressions, or by treatment with Ca2+-modulating reagents such as BAPTA-AM and 2-APB, and with an ER stress inhibitor salubrinal. In vivo, kainate-induced neuronal death was enhanced in the hippocampi of Atf6b-/- and Calr+/- mice, and restored by administration of 2-APB and salubrinal. These results suggest that the ATF6β-CRT axis promotes neuronal survival under ER stress and excitotoxity by improving intracellular Ca2+ homeostasis.


A Comparative Study of the Effect of Anatomical Site on Multiple Differentiation of Adipose-Derived Stem Cells in Rats.

  • Hanan Hendawy‎ et al.
  • Cells‎
  • 2021‎

Mesenchymal stem cells (MSCs) derived from adipose tissue are evolved into various cell-based regenerative approaches. Adipose-derived stem cells (ASCs) isolated from rats are commonly used in tissue engineering studies. Still, there is a gap in knowledge about how the harvest locations influence and guide cell differentiation. This study aims to investigate how the harvesting site affects stem-cell-specific surface markers expression, pluripotency, and differentiation potential of ASCs in female Sprague Dawley rats. ASCs were extracted from the adipose tissue of the peri-ovarian, peri-renal, and mesenteric depots and were compared in terms of cell morphology. MSCs phenotype was validated by cell surfaces markers using flow cytometry. Moreover, pluripotent gene expression of Oct4, Nanog, Sox2, Rex-1, and Tert was evaluated by reverse transcriptase-polymerase chain reaction (RT-PCR). ASCs multipotency was evaluated by specific histological stains, and the results were confirmed by quantitative polymerase chain reaction (RT-qPCR) expression analysis of specific genes. There was a non-significant difference detected in the cell morphology and immunophenotype between different harvesting sites. ASCs from multiple locations were significantly varied in their capacity to differentiate into adipocytes, osteoblastic cells, and chondrocytes. To conclude, depot selection is a critical element that should be considered when using ASCs in tissue-specific cell-based regenerative therapies research.


Regulation of male germline transmission patterns by the Trp53-Cdkn1a pathway.

  • Mito Kanatsu-Shinohara‎ et al.
  • Stem cell reports‎
  • 2022‎

A small number of offspring are born from the numerous sperm generated from spermatogonial stem cells (SSCs). However, little is known regarding the rules and molecular mechanisms that govern germline transmission patterns. Here we report that the Trp53 tumor suppressor gene limits germline genetic diversity via Cdkn1a. Trp53-deficient SSCs outcompeted wild-type (WT) SSCs and produced significantly more progeny after co-transplantation into infertile mice. Lentivirus-mediated transgenerational lineage analysis showed that offspring bearing the same virus integration were repeatedly born in a non-random pattern from WT SSCs. However, SSCs lacking Trp53 or Cdkn1a sired transgenic offspring in random patterns with increased genetic diversity. Apoptosis of KIT+ differentiating germ cells was reduced in Trp53- or Cdkn1a-deficient mice. Reduced CDKN1A expression in Trp53-deficient spermatogonia suggested that Cdkn1a limits genetic diversity by supporting apoptosis of syncytial spermatogonial clones. Therefore, the TRP53-CDKN1A pathway regulates tumorigenesis and the germline transmission pattern.


PDLIM1 inhibits NF-κB-mediated inflammatory signaling by sequestering the p65 subunit of NF-κB in the cytoplasm.

  • Rumiko Ono‎ et al.
  • Scientific reports‎
  • 2015‎

Understanding the regulatory mechanisms for the NF-κB transcription factor is key to control inflammation. IκBα maintains NF-κB in an inactive form in the cytoplasm of unstimulated cells, whereas nuclear NF-κB in activated cells is degraded by PDLIM2, a nuclear ubiquitin E3 ligase that belongs to a LIM protein family. How NF-κB activation is negatively controlled, however, is not completely understood. Here we show that PDLIM1, another member of LIM proteins, negatively regulates NF-κB-mediated signaling in the cytoplasm. PDLIM1 sequestered p65 subunit of NF-κB in the cytoplasm and suppressed its nuclear translocation in an IκBα-independent, but α-actinin-4-dependent manner. Consistently, PDLIM1 deficiency lead to increased levels of nuclear p65 protein, and thus enhanced proinflammatory cytokine production in response to innate stimuli. These studies reveal an essential role of PDLIM1 in suppressing NF-κB activation and suggest that LIM proteins comprise a new family of negative regulators of NF-κB signaling through different mechanisms.


Functional differences between GDNF-dependent and FGF2-dependent mouse spermatogonial stem cell self-renewal.

  • Seiji Takashima‎ et al.
  • Stem cell reports‎
  • 2015‎

Spermatogonial stem cells (SSCs) are required for spermatogenesis. Earlier studies showed that glial cell line-derived neurotrophic factor (GDNF) was indispensable for SSC self-renewal by binding to the GFRA1/RET receptor. Mice with mutations in these molecules showed impaired spermatogenesis, which was attributed to SSC depletion. Here we show that SSCs undergo GDNF-independent self-renewal. A small number of spermatogonia formed colonies when testis fragments from a Ret mutant mouse strain were transplanted into heterologous recipients. Moreover, fibroblast growth factor 2 (FGF2) supplementation enabled in vitro SSC expansion without GDNF. Although GDNF-mediated self-renewal signaling required both AKT and MAP2K1/2, the latter was dispensable in FGF2-mediated self-renewal. FGF2-depleted testes exhibited increased levels of GDNF and were enriched for SSCs, suggesting that the balance between FGF2 and GDNF levels influences SSC self-renewal in vivo. Our results show that SSCs exhibit at least two modes of self-renewal and suggest complexity of SSC regulation in vivo.


The CDKN1B-RB1-E2F1 pathway protects mouse spermatogonial stem cells from genomic damage.

  • Takashi Tanaka‎ et al.
  • The Journal of reproduction and development‎
  • 2015‎

Spermatogonial stem cells (SSCs) undergo self-renewal divisions to provide the foundation for spermatogenesis. Although Rb1 deficiency is reportedly essential for SSC self-renewal, its mechanism has remained unknown. Here we report that Rb1 is critical for cell cycle progression and protection of SSCs from DNA double-strand breaks (DSBs). Cultured SSCs depleted of Cdkn1b proliferated poorly and showed diminished expression of CDK4 and RB1, thereby leading to hypophosphorylation of RB1. Rb1 deficiency induced cell cycle arrest and apoptosis in cultured SSCs, which expressed markers for DNA DSBs. This DNA damage is caused by increased E2F1 activity, the depletion of which decreased DNA DSBs caused by Rb1 deficiency. Depletion of Cdkn1a and Bbc3, which were upregulated by Trp53, rescued Rb1-deficient cells from undergoing cell cycle arrest and apoptosis. These results suggest that the CDKN1B-RB1-E2F1 pathway is essential for SSC self-renewal and protects SSCs against genomic damage.


Decreased cohesin in the brain leads to defective synapse development and anxiety-related behavior.

  • Yuki Fujita‎ et al.
  • The Journal of experimental medicine‎
  • 2017‎

Abnormal epigenetic regulation can cause the nervous system to develop abnormally. Here, we sought to understand the mechanism by which this occurs by investigating the protein complex cohesin, which is considered to regulate gene expression and, when defective, is associated with higher-level brain dysfunction and the developmental disorder Cornelia de Lange syndrome (CdLS). We generated conditional Smc3-knockout mice and observed greater dendritic complexity and larger numbers of immature synapses in the cerebral cortex of Smc3+/- mice. Smc3+/- mice also exhibited more anxiety-related behavior, which is a symptom of CdLS. Further, a gene ontology analysis after RNA-sequencing suggested the enrichment of immune processes, particularly the response to interferons, in the Smc3+/- mice. Indeed, fewer synapses formed in their cortical neurons, and this phenotype was rescued by STAT1 knockdown. Thus, low levels of cohesin expression in the developing brain lead to changes in gene expression that in turn lead to a specific and abnormal neuronal and behavioral phenotype.


MARCKSL1 Regulates Spine Formation in the Amygdala and Controls the Hypothalamic-Pituitary-Adrenal Axis and Anxiety-Like Behaviors.

  • Takashi Tanaka‎ et al.
  • EBioMedicine‎
  • 2018‎

Abnormalities in limbic neural circuits have been implicated in the onset of anxiety disorders. However, the molecular pathogenesis underlying anxiety disorders remains poorly elucidated. Here, we demonstrate that myristoylated alanine-rich C-kinase substrate like 1 (MARCKSL1) regulates amygdala circuitry to control the activity of the hypothalamic-pituitary-adrenal (HPA) axis, as well as induces anxiety-like behaviors in mice. MARCKSL1 expression was predominantly localized in the prefrontal cortex (PFC), hypothalamus, hippocampus, and amygdala of the adult mouse brain. MARCKSL1 transgenic (Tg) mice exhibited anxiety-like behaviors dependent on corticotropin-releasing hormone. MARCKSL1 increased spine formation in the central amygdala, and downregulation of MARCKSL1 in the amygdala normalized both increased HPA axis activity and elevated anxiety-like behaviors in Tg mice. Furthermore, MARCKSL1 expression was increased in the PFC and amygdala in a brain injury model associated with anxiety-like behaviors. Our findings suggest that MARCKSL1 expression in the amygdala plays an important role in anxiety-like behaviors.


A at single nucleotide polymorphism-358 is required for G at -420 to confer the highest plasma resistin in the general Japanese population.

  • Hiroshi Onuma‎ et al.
  • PloS one‎
  • 2010‎

Insulin resistance is a feature of type 2 diabetes. Resistin, secreted from adipocytes, causes insulin resistance in mice. We previously reported that the G/G genotype of single nucleotide polymorphism (SNP) at -420 (rs1862513) in the human resistin gene (RETN) increased susceptibility to type 2 diabetes by enhancing its promoter activity. Plasma resistin was highest in Japanese subjects with G/G genotype, followed by C/G, and C/C. In this study, we cross-sectionally analyzed plasma resistin and SNPs in the RETN region in 2,019 community-dwelling Japanese subjects. Plasma resistin was associated with SNP-638 (rs34861192), SNP-537 (rs34124816), SNP-420, SNP-358 (rs3219175), SNP+299 (rs3745367), and SNP+1263 (rs3745369) (P<10(-13) in all cases). SNP-638, SNP -420, SNP-358, and SNP+157 were in the same linkage disequilibrium (LD) block. SNP-358 and SNP-638 were nearly in complete LD (r(2) = 0.98), and were tightly correlated with SNP-420 (r(2) = 0.50, and 0.51, respectively). The correlation between either SNP-358 (or SNP-638) or SNP-420 and plasma resistin appeared to be strong (risk alleles for high plasma resistin; A at SNP-358, r(2) = 0.5224, P = 4.94x10(-324); G at SNP-420, r(2) = 0.2616, P = 1.71x10(-133)). In haplotypes determined by SNP-420 and SNP-358, the estimated frequencies for C-G, G-A, and G-G were 0.6700, 0.2005, and 0.1284, respectively, and C-A was rare (0.0011), suggesting that subjects with A at -358, generally had G at -420. This G-A haplotype conferred the highest plasma resistin (8.24 ng/ml difference/allele compared to C-G, P<0.0001). In THP-1 cells, the RETN promoter with the G-A haplotype showed the highest activity. Nuclear proteins specifically recognized one base difference at SNP-358, but not at SNP-638. Therefore, A at -358 is required for G at -420 to confer the highest plasma resistin in the general Japanese population. In Caucasians, the association between SNP-420 and plasma resistin is not strong, and A at -358 may not exist, suggesting that SNP-358 could explain this ethnic difference.


An outcome measure for patients with cervical myelopathy: Japanese Orthopaedic Association Cervical Myelopathy Evaluation Questionnaire (JOACMEQ): Part 1.

  • Mitsuru Fukui‎ et al.
  • Journal of orthopaedic science : official journal of the Japanese Orthopaedic Association‎
  • 2007‎

An outcome measure to evaluate the neurological function of cervical myelopathy was proposed by the Japanese Orthopaedic Association in 1975 (JOA score), and has been widely used in Japan. However, the JOA score does not include patients' satisfaction, disability, handicaps, or general health, which can be affected by cervical myelopathy. The purpose of this study was to develop a new outcome measure for patients with cervical myelopathy.


Effect of Exercise on Mortality and Recurrence in Patients With Cancer: A Systematic Review and Meta-Analysis.

  • Shinichiro Morishita‎ et al.
  • Integrative cancer therapies‎
  • 2020‎

Purpose: Exercise could lower the risk of cancer recurrence and improve mortality, exercise capacity, physical and cardiovascular function, strength, and quality of life in patients with cancer. This systematic review and meta-analysis of randomized controlled trials (RCTs) aimed to determine the effects of exercise on mortality and recurrence in patients with cancer. Methods: We searched for articles published before May 2019 in MEDLINE, CINAHL, the Cochrane Library, Scopus, ProQuest, and PEDro. We included RCTs of exercise interventions, such as resistance exercise and aerobic exercise, in patients with cancer that evaluated the risk of mortality and recurrence. The standardized mean difference with 95% confidence intervals (CIs) was calculated for quantitative indices. The random-effect model was used as the pooling method. Results: Of 2868 retrieved articles, 8 RCTs were included in the meta-analysis, with a mean PEDro score of 4.50 (SD = 1.25). Exercise significantly reduced the risk of mortality in patients with cancer and in cancer survivors (risk ratio [RR] = 0.76, 95% CI = 0.40-0.93, I2 = 0%, P = .009). Exercise significantly reduced the risk of recurrence in cancer survivors (RR = 0.52, 95% CI = 0.29-0.92, I2 = 25%, P = .030). Conclusion: This study found that exercise has a favorable effect on mortality and recurrence in patients with cancer. However, the effect could not be fully determined due to data insufficiency.


Combinational Approach of Genetic SHP-1 Suppression and Voluntary Exercise Promotes Corticospinal Tract Sprouting and Motor Recovery Following Brain Injury.

  • Takashi Tanaka‎ et al.
  • Neurorehabilitation and neural repair‎
  • 2020‎

Background. Brain injury often causes severe motor dysfunction, leading to difficulties with living a self-reliant social life. Injured neural circuits must be reconstructed to restore functions, but the adult brain is limited in its ability to restore neuronal connections. The combination of molecular targeting, which enhances neural plasticity, and rehabilitative motor exercise is an important therapeutic approach to promote neuronal rewiring in the spared circuits and motor recovery. Objective. We tested whether genetic reduction of Src homology 2-containing phosphatase-1 (SHP-1), an inhibitor of brain-derived neurotrophic factor (BDNF)/tropomyosin receptor kinase B (TrkB) signaling, has synergistic effects with rehabilitative training to promote reorganization of motor circuits and functional recovery in a mouse model of brain injury. Methods. Rewiring of the corticospinal circuit was examined using neuronal tracers following unilateral cortical injury in control mice and in Shp-1 mutant mice subjected to voluntary exercise. Recovery of motor functions was assessed using motor behavior tests. Results. We found that rehabilitative exercise decreased SHP-1 and increased BDNF and TrkB expression in the contralesional motor cortex after the injury. Genetic reduction of SHP-1 and voluntary exercise significantly increased sprouting of corticospinal tract axons and enhanced motor recovery in the impaired forelimb. Conclusions. Our data demonstrate that combining voluntary exercise and SHP-1 suppression promotes motor recovery and neural circuit reorganization after brain injury.


Pluripotent cell derivation from male germline cells by suppression of Dmrt1 and Trp53.

  • Takashi Tanaka‎ et al.
  • The Journal of reproduction and development‎
  • 2015‎

Diploid germ cells are thought to have pluripotency potential. We recently described a method to derive pluripotent stem cells (PSCs) from cultured spermatogonial stem cells (SSCs) by depleting Trp53 and Dmrt1, both of which are known suppressors of teratomas. In this study, we used this technique to analyze the effect of this protocol in deriving PSCs from the male germline at different developmental stages. We collected primordial germ cells (PGCs), gonocytes and spermatogonia, and the cells were transduced with lentiviruses expressing short hairpin RNA against Dmrt1 and/or Trp53. We found that PGCs are highly susceptible to reprogramming induction and that only Trp53 depletion was sufficient to induce pluripotency. In contrast, gonocytes and spermatogonia were resistant to reprogramming by double knockdown of Dmrt1 and Trp53. PSCs derived from PGCs contributed to chimeras produced by blastocyst injection, but some of the embryos showed placenta-only phenotypes suggestive of epigenetic abnormalities of PGC-derived PSCs. These results show that PGCs and gonocytes/spermatogonia have distinct reprogramming potential and also suggest that fresh and cultured SSCs do not necessarily have the same properties.


Rokumi-jio-gan-Containing Prescriptions Attenuate Oxidative Stress, Inflammation, and Apoptosis in the Remnant Kidney.

  • Chan Hum Park‎ et al.
  • Evidence-based complementary and alternative medicine : eCAM‎
  • 2012‎

Two Rokumi-jio-gan-containing prescriptions (Hachimi-jio-gan and Bakumi-jio-gan) were selected to examine their actions in nephrectomized rats. Each prescription was given orally to rats for 10 weeks after the excision of five-sixths of their kidney volumes, and its effect was compared with non-nephrectomized and normal rats. Rats given Hachimi-jio-gan and Bakumi-jio-gan showed an improvement of renal functional parameters such as serum urea nitrogen, creatinine, creatinine clearance, and urinary protein. The nephrectomized rats exhibited the up-regulation of nicotinamide adenine dinucleotide phosphate oxidase subunits, c-Jun N-terminal kinase (JNK), phosphor-JNK, c-Jun, transforming growth factor-β(1), nuclear factor-kappa B, cyclooxygenase-2, inducible nitric oxide synthase, monocyte chemotactic protein-1, intracellular adhesion molecule-1, Bax, cytochrome c, and caspase-3, and down-regulation of NF-E2-related factor 2, heme oxygenase-1, and survivin; however, Bakumi-jio-gan administration acts as a regulator in inflammatory reactions caused by oxidative stress in renal failure. Moreover, the JNK pathway and apoptosis-related protein expressions, Bax, caspase-3, and survivin, were ameliorated to the normal levels by Hachimi-jio-gan administration. The development of renal lesions, glomerular sclerosis, tubulointerstitial damage, and arteriolar sclerotic lesions, estimated by histopathological evaluation and scoring, was strong in the groups administered Hachimi-jio-gan rather than Bakumi-jio-gan. This study suggests that Rokumi-jio-gan-containing prescriptions play a protective role in the progression of renal failure.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: