Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 25 papers

Germline recombination by conditional gene targeting with Parvalbumin-Cre lines.

  • Yohei Kobayashi‎ et al.
  • Frontiers in neural circuits‎
  • 2013‎

No abstract available


Re-opening Windows: Manipulating Critical Periods for Brain Development.

  • Takao K Hensch‎ et al.
  • Cerebrum : the Dana forum on brain science‎
  • 2012‎

The brain acquires certain skills-from visual perception to language-during critical windows, specific times in early life when the brain is actively shaped by environmental input. Scientists like Takao K. Hensch are now discovering pathways in animal models through which these windows might be re-opened in adults, thus re-awakening a brain's youth-like plasticity. Such research has implications for brain injury repair, sensory recovery, and neurodevelopmental disorder treatment. In addition, what we know today about these critical windows of development already has enormous implications for social and educational policy.


Remodeling of retrotransposon elements during epigenetic induction of adult visual cortical plasticity by HDAC inhibitors.

  • Andreas Lennartsson‎ et al.
  • Epigenetics & chromatin‎
  • 2015‎

The capacity for plasticity in the adult brain is limited by the anatomical traces laid down during early postnatal life. Removing certain molecular brakes, such as histone deacetylases (HDACs), has proven to be effective in recapitulating juvenile plasticity in the mature visual cortex (V1). We investigated the chromatin structure and transcriptional control by genome-wide sequencing of DNase I hypersensitive sites (DHSS) and cap analysis of gene expression (CAGE) libraries after HDAC inhibition by valproic acid (VPA) in adult V1.


Nav1.2 haplodeficiency in excitatory neurons causes absence-like seizures in mice.

  • Ikuo Ogiwara‎ et al.
  • Communications biology‎
  • 2018‎

Mutations in the SCN2A gene encoding a voltage-gated sodium channel Nav1.2 are associated with epilepsies, intellectual disability, and autism. SCN2A gain-of-function mutations cause early-onset severe epilepsies, while loss-of-function mutations cause autism with milder and/or later-onset epilepsies. Here we show that both heterozygous Scn2a-knockout and knock-in mice harboring a patient-derived nonsense mutation exhibit ethosuximide-sensitive absence-like seizures associated with spike-and-wave discharges at adult stages. Unexpectedly, identical seizures are reproduced and even more prominent in mice with heterozygous Scn2a deletion specifically in dorsal-telencephalic (e.g., neocortical and hippocampal) excitatory neurons, but are undetected in mice with selective Scn2a deletion in inhibitory neurons. In adult cerebral cortex of wild-type mice, most Nav1.2 is expressed in excitatory neurons with a steady increase and redistribution from proximal (i.e., axon initial segments) to distal axons. These results indicate a pivotal role of Nav1.2 haplodeficiency in excitatory neurons in epilepsies of patients with SCN2A loss-of-function mutations.


Common circuit defect of excitatory-inhibitory balance in mouse models of autism.

  • Nadine Gogolla‎ et al.
  • Journal of neurodevelopmental disorders‎
  • 2009‎

One unifying explanation for the complexity of Autism Spectrum Disorders (ASD) may lie in the disruption of excitatory/inhibitory (E/I) circuit balance during critical periods of development. We examined whether Parvalbumin (PV)-positive inhibitory neurons, which normally drive experience-dependent circuit refinement (Hensch Nat Rev Neurosci 6:877-888, 1), are disrupted across heterogeneous ASD mouse models. We performed a meta-analysis of PV expression in previously published ASD mouse models and analyzed two additional models, reflecting an embryonic chemical insult (prenatal valproate, VPA) or single-gene mutation identified in human patients (Neuroligin-3, NL-3 R451C). PV-cells were reduced in the neocortex across multiple ASD mouse models. In striking contrast to controls, both VPA and NL-3 mouse models exhibited an asymmetric PV-cell reduction across hemispheres in parietal and occipital cortices (but not the underlying area CA1). ASD mouse models may share a PV-circuit disruption, providing new insight into circuit development and potential prevention by treatment of autism.


Prolonged Period of Cortical Plasticity upon Redox Dysregulation in Fast-Spiking Interneurons.

  • Hirofumi Morishita‎ et al.
  • Biological psychiatry‎
  • 2015‎

Oxidative stress and the specific impairment of perisomatic gamma-aminobutyric acid circuits are hallmarks of the schizophrenic brain and its animal models. Proper maturation of these fast-spiking inhibitory interneurons normally defines critical periods of experience-dependent cortical plasticity.


A critical period for auditory thalamocortical connectivity.

  • Tania Rinaldi Barkat‎ et al.
  • Nature neuroscience‎
  • 2011‎

Neural circuits are shaped by experience during periods of heightened brain plasticity in early postnatal life. Exposure to acoustic features produces age-dependent changes through largely unresolved cellular mechanisms and sites of origin. We isolated the refinement of auditory thalamocortical connectivity by in vivo recordings and day-by-day voltage-sensitive dye imaging in an acute brain slice preparation. Passive tone-rearing modified response strength and topography in mouse primary auditory cortex (A1) during a brief, 3-d window, but did not alter tonotopic maps in the thalamus. Gene-targeted deletion of a forebrain-specific cell-adhesion molecule (Icam5) accelerated plasticity in this critical period. Consistent with its normal role of slowing spinogenesis, loss of Icam5 induced precocious stubby spine maturation on pyramidal cell dendrites in neocortical layer 4 (L4), identifying a primary locus of change for the tonotopic plasticity. The evolving postnatal connectivity between thalamus and cortex in the days following hearing onset may therefore determine a critical period for auditory processing.


Rapid synaptic and gamma rhythm signature of mouse critical period plasticity.

  • Kathleen B Quast‎ et al.
  • Proceedings of the National Academy of Sciences of the United States of America‎
  • 2023‎

Early-life experience enduringly sculpts thalamocortical (TC) axons and sensory processing. Here, we identify the very first synaptic targets that initiate critical period plasticity, heralded by altered cortical oscillations. Monocular deprivation (MD) acutely induced a transient (<3 h) peak in EEG γ-power (~40 Hz) specifically within the visual cortex, but only when the critical period was open (juvenile mice or adults after dark-rearing, Lynx1-deletion, or diazepam-rescued GAD65-deficiency). Rapid TC input loss onto parvalbumin-expressing (PV) inhibitory interneurons (but not onto nearby pyramidal cells) was observed within hours of MD in a TC slice preserving the visual pathway - again once critical periods opened. Computational TC modeling of the emergent γ-rhythm in response to MD delineated a cortical interneuronal gamma (ING) rhythm in networks of PV-cells bearing gap junctions at the start of the critical period. The ING rhythm effectively dissociated thalamic input from cortical spiking, leading to rapid loss of previously strong TC-to-PV connections through standard spike-timing-dependent plasticity rules. As a consequence, previously silent TC-to-PV connections could strengthen on a slower timescale, capturing the gradually increasing γ-frequency and eventual fade-out over time. Thus, ING enables cortical dynamics to transition from being dominated by the strongest TC input to one that senses the statistics of population TC input after MD. Taken together, our findings reveal the initial synaptic events underlying critical period plasticity and suggest that the fleeting ING accompanying a brief sensory perturbation may serve as a robust readout of TC network state with which to probe developmental trajectories.


Durable recovery from amblyopia with donepezil.

  • Carolyn Wu‎ et al.
  • Scientific reports‎
  • 2023‎

An elevated threshold for neuroplasticity limits visual gains with treatment of residual amblyopia in older children and adults. Acetylcholinesterase inhibitors (AChEI) can enable visual neuroplasticity and promote recovery from amblyopia in adult mice. Motivated by these promising findings, we sought to determine whether donepezil, a commercially available AChEI, can enable recovery in older children and adults with residual amblyopia. In this open-label pilot efficacy study, 16 participants (mean age 16 years; range 9-37 years) with residual anisometropic and/or strabismic amblyopia were treated with daily oral donepezil for 12 weeks. Donepezil dosage was started at 2.5 or 5.0 mg based on age and increased by 2.5 mg if the amblyopic eye visual acuity did not improve by 1 line from the visit 4 weeks prior for a maximum dosage of 7.5 or 10 mg. Participants < 18 years of age further patched the dominant eye. The primary outcome was visual acuity in the amblyopic eye at 22 weeks, 10 weeks after treatment was discontinued. Mean amblyopic eye visual acuity improved 1.2 lines (range 0.0-3.0), and 4/16 (25%) improved by ≥ 2 lines after 12 weeks of treatment. Gains were maintained 10 weeks after cessation of donepezil and were similar for children and adults. Adverse events were mild and self-limited. Residual amblyopia improves in older children and adults treated with donepezil, supporting the concept that the critical window of visual cortical plasticity can be pharmacologically manipulated to treat amblyopia. Placebo-controlled studies are needed.


Clock genes control cortical critical period timing.

  • Yohei Kobayashi‎ et al.
  • Neuron‎
  • 2015‎

Circadian rhythms control a variety of physiological processes, but whether they may also time brain development remains largely unknown. Here, we show that circadian clock genes control the onset of critical period plasticity in the neocortex. Within visual cortex of Clock-deficient mice, the emergence of circadian gene expression was dampened, and the maturation of inhibitory parvalbumin (PV) cell networks slowed. Loss of visual acuity in response to brief monocular deprivation was concomitantly delayed and rescued by direct enhancement of GABAergic transmission. Conditional deletion of Clock or Bmal1 only within PV cells recapitulated the results of total Clock-deficient mice. Unique downstream gene sets controlling synaptic events and cellular homeostasis for proper maturation and maintenance were found to be mis-regulated by Clock deletion specifically within PV cells. These data demonstrate a developmental role for circadian clock genes outside the suprachiasmatic nucleus, which may contribute mis-timed brain plasticity in associated mental disorders.


Early Seizures Prematurely Unsilence Auditory Synapses to Disrupt Thalamocortical Critical Period Plasticity.

  • Hongyu Sun‎ et al.
  • Cell reports‎
  • 2018‎

Heightened neural excitability in infancy and childhood results in increased susceptibility to seizures. Such early-life seizures are associated with language deficits and autism that can result from aberrant development of the auditory cortex. Here, we show that early-life seizures disrupt a critical period (CP) for tonotopic map plasticity in primary auditory cortex (A1). We show that this CP is characterized by a prevalence of "silent," NMDA-receptor (NMDAR)-only, glutamate receptor synapses in auditory cortex that become "unsilenced" due to activity-dependent AMPA receptor (AMPAR) insertion. Induction of seizures prior to this CP occludes tonotopic map plasticity by prematurely unsilencing NMDAR-only synapses. Further, brief treatment with the AMPAR antagonist NBQX following seizures, prior to the CP, prevents synapse unsilencing and permits subsequent A1 plasticity. These findings reveal that early-life seizures modify CP regulators and suggest that therapeutic targets for early post-seizure treatment can rescue CP plasticity.


IP3R1 deficiency in the cerebellum/brainstem causes basal ganglia-independent dystonia by triggering tonic Purkinje cell firings in mice.

  • Chihiro Hisatsune‎ et al.
  • Frontiers in neural circuits‎
  • 2013‎

The type 1 inositol 1,4,5- trisphosphate receptor (IP3R1) is a Ca(2+) channel on the endoplasmic reticulum and is a predominant isoform in the brain among the three types of IP3Rs. Mice lacking IP3R1 show seizure-like behavior; however the cellular and neural circuit mechanism by which IP3R1 deletion causes the abnormal movements is unknown. Here, we found that the conditional knockout mice lacking IP3R1 specifically in the cerebellum and brainstem experience dystonia and show that cerebellar Purkinje cell (PC) firing patterns were coupled to specific dystonic movements. Recordings in freely behaving mice revealed epochs of low and high frequency PC complex spikes linked to body extension and rigidity, respectively. Remarkably, dystonic symptoms were independent of the basal ganglia, and could be rescued by inactivation of the cerebellum, inferior olive or in the absence of PCs. These findings implicate IP3R1-dependent PC firing patterns in cerebellum in motor coordination and the expression of dystonia through the olivo-cerebellar pathway.


DNA methylation map of mouse and human brain identifies target genes in Alzheimer's disease.

  • Jose V Sanchez-Mut‎ et al.
  • Brain : a journal of neurology‎
  • 2013‎

The central nervous system has a pattern of gene expression that is closely regulated with respect to functional and anatomical regions. DNA methylation is a major regulator of transcriptional activity, and aberrations in the distribution of this epigenetic mark may be involved in many neurological disorders, such as Alzheimer's disease. Herein, we have analysed 12 distinct mouse brain regions according to their CpG 5'-end gene methylation patterns and observed their unique epigenetic landscapes. The DNA methylomes obtained from the cerebral cortex were used to identify aberrant DNA methylation changes that occurred in two mouse models of Alzheimer's disease. We were able to translate these findings to patients with Alzheimer's disease, identifying DNA methylation-associated silencing of three targets genes: thromboxane A2 receptor (TBXA2R), sorbin and SH3 domain containing 3 (SORBS3) and spectrin beta 4 (SPTBN4). These hypermethylation targets indicate that the cyclic AMP response element-binding protein (CREB) activation pathway and the axon initial segment could contribute to the disease.


Inhibitory circuit gating of auditory critical-period plasticity.

  • Anne E Takesian‎ et al.
  • Nature neuroscience‎
  • 2018‎

Cortical sensory maps are remodeled during early life to adapt to the surrounding environment. Both sensory and contextual signals are important for induction of this plasticity, but how these signals converge to sculpt developing thalamocortical circuits remains largely unknown. Here we show that layer 1 (L1) of primary auditory cortex (A1) is a key hub where neuromodulatory and topographically organized thalamic inputs meet to tune the cortical layers below. Inhibitory interneurons in L1 send narrowly descending projections to differentially modulate thalamic drive to pyramidal and parvalbumin-expressing (PV) cells in L4, creating brief windows of intracolumnar activation. Silencing of L1 (but not VIP-expressing) cells abolishes map plasticity during the tonotopic critical period. Developmental transitions in nicotinic acetylcholine receptor (nAChR) sensitivity in these cells caused by Lynx1 protein can be overridden to extend critical-period closure. Notably, thalamocortical maps in L1 are themselves stable, and serve as a scaffold for cortical plasticity throughout life.


A resource for transcriptomic analysis in the mouse brain.

  • Charles Plessy‎ et al.
  • PloS one‎
  • 2008‎

The transcriptome of the cerebral cortex is remarkably homogeneous, with variations being stronger between individuals than between areas. It is thought that due to the presence of many distinct cell types, differences within one cell population will be averaged with the noise from others. Studies of sorted cells expressing the same transgene have shown that cell populations can be distinguished according to their transcriptional profile.


Chondroitin Sulfate Is Required for Onset and Offset of Critical Period Plasticity in Visual Cortex.

  • Xubin Hou‎ et al.
  • Scientific reports‎
  • 2017‎

Ocular dominance plasticity is easily observed during the critical period in early postnatal life. Chondroitin sulfate (CS) is the most abundant component in extracellular structures called perineuronal nets (PNNs), which surround parvalbumin-expressing interneurons (PV-cells). CS accumulates in PNNs at the critical period, but its function in earlier life is unclear. Here, we show that initiation of ocular dominance plasticity was impaired with reduced CS, using mice lacking a key CS-synthesizing enzyme, CSGalNAcT1. Two-photon in vivo imaging showed a weaker visual response of PV-cells with reduced CS compared to wild-type mice. Plasticity onset was restored by a homeoprotein Otx2, which binds the major CS-proteoglycan aggrecan and promotes its further expression. Continuous CS accumulation together with Otx2 contributed bidirectionally to both onset and offset of plasticity, and was substituted by diazepam, which enhances GABA function. Therefore, CS and Otx2 may act as common inducers of both onset and offset of the critical period by promoting PV-cell function throughout the lifetime.


Nav1.1 haploinsufficiency in excitatory neurons ameliorates seizure-associated sudden death in a mouse model of Dravet syndrome.

  • Ikuo Ogiwara‎ et al.
  • Human molecular genetics‎
  • 2013‎

Dravet syndrome is a severe epileptic encephalopathy mainly caused by heterozygous mutations in the SCN1A gene encoding a voltage-gated sodium channel Nav1.1. We previously reported dense localization of Nav1.1 in parvalbumin (PV)-positive inhibitory interneurons in mice and abnormal firing of those neurons in Nav1.1-deficient mice. In the present study, we investigated the physiologic consequence of selective Nav1.1 deletion in mouse global inhibitory neurons, forebrain excitatory neurons or PV cells, using vesicular GABA transporter (VGAT)-Cre, empty spiracles homolog 1 (Emx1)-Cre or PV-Cre recombinase drivers. We show that selective Nav1.1 deletion using VGAT-Cre causes epileptic seizures and premature death that are unexpectedly more severe than those observed in constitutive Nav1.1-deficient mice. Nav1.1 deletion using Emx1-Cre does not cause any noticeable abnormalities in mice; however, the severe lethality observed with VGAT-Cre-driven Nav1.1 deletion is rescued by additional Nav1.1 deletion using Emx1-Cre. In addition to predominant expression in PV interneurons, we detected Nav1.1 in subpopulations of excitatory neurons, including entorhino-hippocampal projection neurons, a subpopulation of neocortical layer V excitatory neurons, and thalamo-cortical projection neurons. We further show that even minimal selective Nav1.1 deletion, using PV-Cre, is sufficient to cause spontaneous epileptic seizures and ataxia in mice. Overall, our results indicate that functional impairment of PV inhibitory neurons with Nav1.1 haploinsufficiency contributes to the epileptic pathology of Dravet syndrome, and show for the first time that Nav1.1 haploinsufficiency in excitatory neurons has an ameliorating effect on the pathology.


Experience-dependent pruning of dendritic spines in visual cortex by tissue plasminogen activator.

  • Nobuko Mataga‎ et al.
  • Neuron‎
  • 2004‎

Sensory experience physically rewires the brain in early postnatal life through unknown processes. Here, we identify a robust anatomical consequence of monocular deprivation (MD) in layer II/III of visual cortex that corresponds to the rapid, functional loss of responsiveness preceding any changes in axonal input. Protrusions on pyramidal cell apical dendrites increased steadily after eye opening, but were transiently lost through competitive mechanisms after brief MD only during the physiological critical period. Proteolysis by tissue-type plasminogen activator (tPA) conversely declined with age and increased with MD only in young mice. Targeted disruption of tPA release or its upstream regulation by glutamic acid decarboxylase (GAD65) prevented MD-induced spine loss that was pharmacologically rescued concomitant with critical period plasticity. An extracellular mechanism for structural remodeling that is limited to the binocular zone upon proper detection of competing inputs thus links early sensory experience to visual function.


Choroid-plexus-derived Otx2 homeoprotein constrains adult cortical plasticity.

  • Julien Spatazza‎ et al.
  • Cell reports‎
  • 2013‎

Brain plasticity is often restricted to critical periods in early life. Here, we show that a key regulator of this process in the visual cortex, Otx2 homeoprotein, is synthesized and secreted globally from the choroid plexus. Consequently, Otx2 is maintained in selected GABA cells unexpectedly throughout the mature forebrain. Genetic disruption of choroid-expressed Otx2 impacts these distant circuits and in the primary visual cortex reopens binocular plasticity to restore vision in amblyopic mice. The potential to regulate adult cortical plasticity through the choroid plexus underscores the importance of this structure in brain physiology and offers therapeutic approaches to recovery from a broad range of neurodevelopmental disorders.


Impaired cortico-striatal excitatory transmission triggers epilepsy.

  • Hiroyuki Miyamoto‎ et al.
  • Nature communications‎
  • 2019‎

STXBP1 and SCN2A gene mutations are observed in patients with epilepsies, although the circuit basis remains elusive. Here, we show that mice with haplodeficiency for these genes exhibit absence seizures with spike-and-wave discharges (SWDs) initiated by reduced cortical excitatory transmission into the striatum. Mice deficient for Stxbp1 or Scn2a in cortico-striatal but not cortico-thalamic neurons reproduce SWDs. In Stxbp1 haplodeficient mice, there is a reduction in excitatory transmission from the neocortex to striatal fast-spiking interneurons (FSIs). FSI activity transiently decreases at SWD onset, and pharmacological potentiation of AMPA receptors in the striatum but not in the thalamus suppresses SWDs. Furthermore, in wild-type mice, pharmacological inhibition of cortico-striatal FSI excitatory transmission triggers absence and convulsive seizures in a dose-dependent manner. These findings suggest that impaired cortico-striatal excitatory transmission is a plausible mechanism that triggers epilepsy in Stxbp1 and Scn2a haplodeficient mice.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: