Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 17 papers out of 17 papers

Modulation of osmotic stress-induced TRPV1 expression rescues human iPSC-derived retinal ganglion cells through PKA.

  • Chih-Chien Hsu‎ et al.
  • Stem cell research & therapy‎
  • 2019‎

Transient receptor potential vanilloid 1 (TRPV1), recognized as a hyperosmolarity sensor, is a crucial ion channel involved in the pathogenesis of neural and glial signaling. Recently, TRPV1 was determined to play a role in retinal physiology and visual transmission. In this study, we sought to clarify the role of TRPV1 and the downstream pathway in the osmotic stress-related retina ganglion cell (RGC) damage.


Identification of Novel Genomic-Variant Patterns of OR56A5, OR52L1, and CTSD in Retinitis Pigmentosa Patients by Whole-Exome Sequencing.

  • Ting-Yi Lin‎ et al.
  • International journal of molecular sciences‎
  • 2021‎

Inherited retinal dystrophies (IRDs) are rare but highly heterogeneous genetic disorders that affect individuals and families worldwide. However, given its wide variability, its analysis of the driver genes for over 50% of the cases remains unexplored. The present study aims to identify novel driver genes, disease-causing variants, and retinitis pigmentosa (RP)-associated pathways. Using family-based whole-exome sequencing (WES) to identify putative RP-causing rare variants, we identified a total of five potentially pathogenic variants located in genes OR56A5, OR52L1, CTSD, PRF1, KBTBD13, and ATP2B4. Of the variants present in all affected individuals, genes OR56A5, OR52L1, CTSD, KBTBD13, and ATP2B4 present as missense mutations, while PRF1 and CTSD present as frameshift variants. Sanger sequencing confirmed the presence of the novel pathogenic variant PRF1 (c.124_128del) that has not been reported previously. More causal-effect or evidence-based studies will be required to elucidate the precise roles of these SNPs in the RP pathogenesis. Taken together, our findings may allow us to explore the risk variants based on the sequencing data and upgrade the existing variant annotation database in Taiwan. It may help detect specific eye diseases such as retinitis pigmentosa in East Asia.


TMEM132D and VIPR2 Polymorphisms as Genetic Risk Loci for Retinal Detachment: A Genome-Wide Association Study and Polygenic Risk Score Analysis.

  • Hao-Kai Chuang‎ et al.
  • Investigative ophthalmology & visual science‎
  • 2023‎

Retinal detachment (RD) is a sight-threatening ocular disease caused by separation of the neurosensory retina from the underlying retinal pigment epithelium layer. Its genetic basis is unclear because of a limited amount of data. In this study, we aimed to identify genetic risk loci associated with RD in participants without diabetes mellitus and to construct a polygenic risk score (PRS) to predict the risk of RD.


HLA-Homozygous iPSC-Derived Mesenchymal Stem Cells Rescue Rotenone-Induced Experimental Leber's Hereditary Optic Neuropathy-like Models In Vitro and In Vivo.

  • En-Tung Tsai‎ et al.
  • Cells‎
  • 2023‎

Mesenchymal stem cells (MSCs) hold promise for cell-based therapy, yet the sourcing, quality, and invasive methods of MSCs impede their mass production and quality control. Induced pluripotent stem cell (iPSC)-derived MSCs (iMSCs) can be infinitely expanded, providing advantages over conventional MSCs in terms of meeting unmet clinical demands.


Glutamate Stimulation Dysregulates AMPA Receptors-Induced Signal Transduction Pathway in Leber's Inherited Optic Neuropathy Patient-Specific hiPSC-Derived Retinal Ganglion Cells.

  • Yi-Ping Yang‎ et al.
  • Cells‎
  • 2019‎

The mitochondrial genetic disorder, Leber's hereditary optic neuropathy (LHON), is caused by a mutation in MT-ND4 gene, encoding NADH dehydrogenase subunit 4. It leads to the progressive death of retinal ganglion cells (RGCs) and causes visual impairment or even blindness. However, the precise mechanisms of LHON disease penetrance and progression are not completely elucidated. Human-induced pluripotent stem cells (hiPSCs) offer unique opportunities to investigate disease-relevant phenotypes and regulatory mechanisms underlying LHON pathogenesis at the cellular level. In this study, we successfully generated RGCs by differentiation of LHON patient-specific hiPSCs. We modified the protocol of differentiation to obtain a more enriched population of single-cell RGCs for LHON study. Based on assessing morphology, expression of specific markers and electrophysiological activity, we found that LHON-specific hiPSC-derived were more defective in comparison with normal wild-type RGCs. Based on our previous study, whereby by using microarray analysis we identified that the components of glutamatergic synapse signaling pathway were significantly downregulated in LHON-specific RGCs, we focused our study on glutamate-associated α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) receptors. We found that the protein expression levels of the subunits of the AMPA receptor, GluR1 and GluR2, and their associated scaffold proteins were decreased in LHON-RGCs. By performing the co-immunoprecipitation assay, we found several differences in the efficiencies of interaction between AMPA subunits and scaffold proteins between normal and LHON-specific RGCs.


Changes in the Systemic Expression of Sirtuin-1 and Oxidative Stress after Intravitreal Anti-Vascular Endothelial Growth Factor in Patients with Retinal Vein Occlusion.

  • De-Kuang Hwang‎ et al.
  • Biomolecules‎
  • 2020‎

Retinal vein occlusions (RVO) are associated with systemic risk factors. However, the ocular occlusive events might also influence a patient's systemic condition. This study tried to investigate serum biomarkers associated with oxidative stress, before and after intravitreal anti-vascular endothelial growth factor (aVEGF) therapy in patients with RVOs.


Expression of Endogenous Angiotensin-Converting Enzyme 2 in Human Induced Pluripotent Stem Cell-Derived Retinal Organoids.

  • Henkie Isahwan Ahmad Mulyadi Lai‎ et al.
  • International journal of molecular sciences‎
  • 2021‎

Angiotensin-converting enzyme 2 (ACE2) was identified as the main host cell receptor for the entry of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and its subsequent infection. In some coronavirus disease 2019 (COVID-19) patients, it has been reported that the nervous tissues and the eyes were also affected. However, evidence supporting that the retina is a target tissue for SARS-CoV-2 infection is still lacking. This present study aimed to investigate whether ACE2 expression plays a role in human retinal neurons during SARS-CoV-2 infection. Human induced pluripotent stem cell (hiPSC)-derived retinal organoids and monolayer cultures derived from dissociated retinal organoids were generated. To validate the potential entry of SARS-CoV-2 infection in the retina, we showed that hiPSC-derived retinal organoids and monolayer cultures endogenously express ACE2 and transmembrane serine protease 2 (TMPRSS2) on the mRNA level. Immunofluorescence staining confirmed the protein expression of ACE2 and TMPRSS2 in retinal organoids and monolayer cultures. Furthermore, using the SARS-CoV-2 pseudovirus spike protein with GFP expression system, we found that retinal organoids and monolayer cultures can potentially be infected by the SARS-CoV-2 pseudovirus. Collectively, our findings highlighted the potential of iPSC-derived retinal organoids as the models for ACE2 receptor-based SARS-CoV-2 infection.


Generation of induced pluripotent stem cells from a patient with Best Dystrophy carrying 11q12.3 (BEST1 (VMD2)) mutation.

  • Chih-Chien Hsu‎ et al.
  • Stem cell research‎
  • 2018‎

Best disease (BD), also termed Best vitelliform macular dystrophy (BVMD), is a juvenile-onset form of macular degeneration and central visual loss. In this report, we generated an induced pluripotent stem cell (iPSC) line, TVGH-iPSC-012-04, from the peripheral blood mononuclear cells of a female patient with BD by using the Sendai virus delivery system. The resulting iPSCs retained the disease-causing DNA mutation, expressed pluripotent markers and could differentiate into three germ layers. We believe that BD patient-specific iPSCs provide a powerful in vitro model for evaluating the pathological phenotypes of the disease.


Treatment patterns in diabetic macular edema in Taiwan: a retrospective chart review.

  • Shwu-Jiuan Sheu‎ et al.
  • Clinical ophthalmology (Auckland, N.Z.)‎
  • 2018‎

To characterize diabetic macular edema (DME) treatment patterns in Taiwan and examine their impact on health care resource utilization and visual and anatomic outcomes.


Development of polydimethylsiloxane-based biomimetic scaffolds with cylinder micropillars for retinal pigment epithelial cell cultivation.

  • Yi-Ying Lin‎ et al.
  • Journal of the Chinese Medical Association : JCMA‎
  • 2020‎

Age-related macular degeneration (AMD) is one of the leading causes of vision loss. Once the retinal pigment epithelium (RPE) layers are destroyed, the poor visual acuity and recognition are generally irreversible. Cell therapy that possesses enormous potential in regenerative medicine may provide an alternative treatment for several incurable diseases such as AMD. In this study, we developed an innovative polydimethylsiloxane (PDMS)-based biomimetic scaffolds with cylinder micropillars for the cultivation of induced pluripotent stem cell-derived RPEs (iPSC-RPEs). RPEs were cultured on the PDMS-based biomimetic scaffolds and validated the cells gene expression.


Primary Signet Ring Cell/Histiocytoid Carcinoma of the Eyelid: Somatic Mutations in CDH1 and Other Clinically Actionable Mutations Imply Early Use of Targeted Agents.

  • Lei-Chi Wang‎ et al.
  • Current oncology (Toronto, Ont.)‎
  • 2021‎

Primary signet ring cell/histiocytoid carcinoma of the eyelid is a rare ocular malignancy and its diagnosis is often delayed. This neoplasm presents as an insidious, diffusely infiltrative mass in the periocular area that later infiltrates the orbit. An exenteration is usually indicated; however, nearly one-third of patients develop local recurrence or metastasis. Morphologically, it resembles signet ring cell carcinoma of the stomach and breast, raising the possibility of mutations in CDH1, the gene encoding E-cadherin. To determine whether primary signet ring cell/histiocytoid carcinoma harbors the CDH1 mutation or other actionable mutations, we analyzed the tumor tissue via next-generation sequencing. We identified only one case of primary signet ring cell carcinoma of the eyelid with adequate DNA quality for sequencing from the pathological archive during the period 2000 to 2020. A comprehensive evaluation including histopathology, immunohistochemistry, and next-generation sequencing assay was performed on tumor tissue. Immunohistochemically, the tumor exhibited E-cadherin membranous staining with the aberrant cytoplasmic staining of β-catenin. Using next-generation sequencing, we demonstrated the mutation in the CDH1 gene. In addition, other clinically actionable mutations including ERBB2 and PIK3CA were also detected. The alterations in other actionable genes indicate a need for larger studies to evaluate the pathogenesis and potential therapies for primary signet ring cell/histiocytoid carcinoma of the eyelid.


Xeno-free cryopreservation of adherent retinal pigmented epithelium yields viable and functional cells in vitro and in vivo.

  • Britney O Pennington‎ et al.
  • Scientific reports‎
  • 2021‎

Age-related macular degeneration (AMD) is the primary cause of blindness in adults over 60 years of age, and clinical trials are currently assessing the therapeutic potential of retinal pigmented epithelial (RPE) cell monolayers on implantable scaffolds to treat this disease. However, challenges related to the culture, long-term storage, and long-distance transport of such implants currently limit the widespread use of adherent RPE cells as therapeutics. Here we report a xeno-free protocol to cryopreserve a confluent monolayer of clinical-grade, human embryonic stem cell-derived RPE cells on a parylene scaffold (REPS) that yields viable, polarized, and functional RPE cells post-thaw. Thawed cells exhibit ≥ 95% viability, have morphology, pigmentation, and gene expression characteristic of mature RPE cells, and secrete the neuroprotective protein, pigment epithelium-derived factor (PEDF). Stability under liquid nitrogen (LN2) storage has been confirmed through one year. REPS were administered immediately post-thaw into the subretinal space of a mammalian model, the Royal College of Surgeons (RCS)/nude rat. Implanted REPS were assessed at 30, 60, and 90 days post-implantation, and thawed cells demonstrate survival as an intact monolayer on the parylene scaffold. Furthermore, immunoreactivity for the maturation marker, RPE65, significantly increased over the post-implantation period in vivo, and cells demonstrated functional attributes similar to non-cryopreserved controls. The capacity to cryopreserve adherent cellular therapeutics permits extended storage and stable transport to surgical sites, enabling broad distribution for the treatment of prevalent diseases such as AMD.


Generation of patient-specific induced pluripotent stem cells from Leber's hereditary optic neuropathy.

  • Huai-En Lu‎ et al.
  • Stem cell research‎
  • 2018‎

Leber's hereditary optic neuropathy (LHON) is a maternally inherited mitochondrial disease caused by homoplasmic point mutations in complex I subunit genes of mitochondrial DNA. In this report, we generated an induced pluripotent stem cell (iPSCs) line, TVGH-iPSC-010-09, from the peripheral blood mononuclear cells of a female patient with Leber's hereditary optic neuropathy (LHON) by using the Sendai-virus delivery system. The resulting iPSCs retained the disease-causing mitochondrial DNA mutation, expressed pluripotent markers and could differentiate into the three germ layers. We believe LHON patient-specific iPSCs provide a powerful in vitro model for evaluating the pathological phenotypes of the disease.


Genome-Wide Polygenic Risk Score for Predicting High Risk Glaucoma Individuals of Han Chinese Ancestry.

  • Yu-Jer Hsiao‎ et al.
  • Journal of personalized medicine‎
  • 2021‎

Glaucoma is a progressive and irreversible blindness-causing disease. However, the underlying genetic factors and molecular mechanisms remain poorly understood. Previous genome-wide association studies (GWAS) have made tremendous progress on the SNP-based disease association and characterization. However, most of them were conducted for Europeans. Since differential genetic characteristics among ethnic groups were evident in glaucoma, it is worthwhile to complete its genetic landscape from the larger cohorts of Asian individuals. Here, we present a GWAS based on the Taiwan Biobank. Among 1013 glaucoma patients and 36,562 controls, we identified a total of 138 independent glaucoma-associated SNPs at the significance level of p < 1 × 10-5. After clumping genetically linked SNPs (LD clumping), 134 independent SNPs with p < 10-4 were recruited to construct a Polygenic Risk Score (PRS). The model achieved an area under the receiver operating characteristic curve (AUC) of 0.8387 (95% CI = [0.8269-0.8506]), and those within the top PRS quantile had a 45.48-fold increased risk of glaucoma compared with those within the lowest quantile. The PRS model was validated with an independent cohort that achieved an AUC of 0.7283, thereby showing the effectiveness of our polygenic risk score in predicting individuals in the Han Chinese population with higher glaucoma risks.


Inhibition of DUSP6 Activates Autophagy and Rescues the Retinal Pigment Epithelium in Sodium Iodate-Induced Retinal Degeneration Models In Vivo and In Vitro.

  • Hao-Yu Tsai‎ et al.
  • Biomedicines‎
  • 2022‎

Autophagy plays a protective role in the retinal pigment epithelium (RPE) by eliminating damaged organelles in response to reactive oxygen species (ROS). Dual-specificity protein phosphatase 6 (DUSP6), which belongs to the DUSP subfamily, works as a negative-feedback regulator of the extracellular signal-regulated kinase (ERK) pathway. However, the complex interplay between DUSP6 and autophagy induced by ROS in RPE is yet to be investigated. To investigate the relationship between DUSP6 and autophagy, we exposed the ARPE-19 cell line and C57BL/6N mice to sodium iodate (NaIO3) as an oxidative stress inducer. Our data showed that the inhibition of DUSP6 activity promotes autophagy flux through the ERK pathway via the upregulation of immunoblotting expression in ARPE-19 cells. Live imaging showed a significant increase in autophagic flux activities, which suggested the restoration autophagy after treatment with the DUSP6 inhibitor. Furthermore, the mouse RPE layer exhibited an irregular structure and abnormal deposits following NaIO3 injection. The retina layer was recovered after being treated with DUSP6 inhibitor; this suggests that DUSP6 inhibitor can rescue retinal damage by restoring the mouse retina's autophagy flux. This study suggests that the upregulation of DUSP6 can cause autophagy flux malfunctions in the RPE. The DUSP6 inhibitor can restore autophagy induction, which may serve as a potential therapeutic approach for retinal degeneration disease.


Nanomedicine-based Curcumin Approach Improved ROS Damage in Best Dystrophy-specific Induced Pluripotent Stem Cells.

  • Tai-Chi Lin‎ et al.
  • Cell transplantation‎
  • 2019‎

Best dystrophy (BD), also termed best vitelliform macular dystrophy (BVMD), is a juvenile-onset form of macular degeneration and can cause central visual loss. Unfortunately, there is no clear definite therapy for BD or improving the visual function on this progressive disease. The human induced pluripotent stem cell (iPSC) system has been recently applied as an effective tool for genetic consultation and chemical drug screening. In this study, we developed patient-specific induced pluripotent stem cells (BD-iPSCs) from BD patient-derived dental pulp stromal cells and then differentiated BD-iPSCs into retinal pigment epithelial cells (BD-RPEs). BD-RPEs were used as an expandable platform for in vitro candidate drug screening. Compared with unaffected sibling-derived iPSC-derived RPE cells (Ctrl-RPEs), BD-RPEs exhibited typical RPE-specific markers with a lower expression of the tight junction protein ZO-1 and Bestrophin-1 (BEST1), as well as reduced phagocytic capabilities. Notably, among all candidate drugs, curcumin was the most effective for upregulating both the BEST1 and ZO-1 genes in BD-RPEs. Using the iPSC-based drug-screening platform, we further found that curcumin can significantly improve the mRNA expression levels of Best gene in BD-iPSC-derived RPEs. Importantly, we demonstrated that curcumin-loaded PLGA nanoparticles (Cur-NPs) were efficiently internalized by BD-RPEs. The Cur-NPs-based controlled release formulation further increased the expression of ZO-1 and Bestrophin-1, and promoted the function of phagocytosis and voltage-dependent calcium channels in BD-iPSC-derived RPEs. We further demonstrated that Cur-NPs enhanced the expression of antioxidant enzymes with a decrease in intracellular ROS production and hydrogen peroxide-induced oxidative stress. Collectively, these data supported that Cur-NPs provide a potential cytoprotective effect by regulating the anti-oxidative abilities of degenerated RPEs. In addition, the application of patient-specific iPSCs provides an effective platform for drug screening and personalized medicine in incurable diseases.


Generation of induced pluripotent stem cells from a patient with X-linked juvenile retinoschisis.

  • Chi-Hsien Peng‎ et al.
  • Stem cell research‎
  • 2018‎

X-linked juvenile retinoschisis (XLRS) is a hereditary retinal dystrophy manifested as splitting of anatomical layers of retina. In this report, we generated a patient-specific induced pluripotent stem cell (iPSC) line, TVGH-iPSC-013-05, from the peripheral blood mononuclear cells of a male patient with XLRS by using the Sendai-virus delivery system. We believe that XLRS patient-specific iPSCs provide a powerful in vitro model for evaluating the pathological phenotypes of the disease.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: