Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 23 papers

Chk2*1100delC Acts in synergy with the Ron receptor tyrosine kinase to accelerate mammary tumorigenesis in mice.

  • Sara E Meyer‎ et al.
  • Cancer letters‎
  • 2010‎

The CHEK2 (Chk2 in mice) polymorphic variant, CHEK2*1100delC, leads to genomic instability and is associated with an increased risk for breast cancer. The Ron receptor tyrosine kinase is overexpressed in a large fraction of human breast cancers. Here, we asked whether the low penetrance Chk2*1100delC allele alters the tumorigenic efficacy of Ron in the development of mammary tumors in a mouse model. Our data demonstrate that Ron overexpression on a Chk2*1100delC background accelerates the development of mammary tumors, and shows that pathways mediated by a tyrosine kinase receptor and a regulator of the cell cycle can act to hasten tumorigenesis in vivo.


The human DEK oncogene regulates DNA damage response signaling and repair.

  • Gina M Kavanaugh‎ et al.
  • Nucleic acids research‎
  • 2011‎

The human DEK gene is frequently overexpressed and sometimes amplified in human cancer. Consistent with oncogenic functions, Dek knockout mice are partially resistant to chemically induced papilloma formation. Additionally, DEK knockdown in vitro sensitizes cancer cells to DNA damaging agents and induces cell death via p53-dependent and -independent mechanisms. Here we report that DEK is important for DNA double-strand break repair. DEK depletion in human cancer cell lines and xenografts was sufficient to induce a DNA damage response as assessed by detection of γH2AX and FANCD2. Phosphorylation of H2AX was accompanied by contrasting activation and suppression, respectively, of the ATM and DNA-PK pathways. Similar DNA damage responses were observed in primary Dek knockout mouse embryonic fibroblasts (MEFs), along with increased levels of DNA damage and exaggerated induction of senescence in response to genotoxic stress. Importantly, Dek knockout MEFs exhibited distinct defects in non-homologous end joining (NHEJ) when compared to their wild-type counterparts. Taken together, the data demonstrate new molecular links between DEK and DNA damage response signaling pathways, and suggest that DEK contributes to DNA repair.


Inherited DNA Repair Defects Disrupt the Structure and Function of Human Skin.

  • Sonya Ruiz-Torres‎ et al.
  • Cell stem cell‎
  • 2021‎

Squamous cell carcinoma (SCC) is a global public health burden originating in epidermal stem and progenitor cells (ESPCs) of the skin and mucosa. To understand how genetic risk factors contribute to SCC, studies of ESPC biology are imperative. Children with Fanconi anemia (FA) are a paradigm for extreme SCC susceptibility caused by germline loss-of-function mutations in FA DNA repair pathway genes. To discover epidermal vulnerabilities, patient-derived pluripotent stem cells (PSCs) conditional for the FA pathway were differentiated into ESPCs and PSC-derived epidermal organotypic rafts (PSC-EORs). FA PSC-EORs harbored diminished cell-cell junctions and increased proliferation in the basal cell compartment. Furthermore, desmosome and hemidesmosome defects were identified in the skin of FA patients, and these translated into accelerated blistering following mechanically induced stress. Together, we demonstrate that a critical DNA repair pathway maintains the structure and function of human skin and provide 3D epidermal models wherein SCC prevention can now be explored.


Rb suppresses collective invasion, circulation and metastasis of breast cancer cells in CD44-dependent manner.

  • Kui-Jin Kim‎ et al.
  • PloS one‎
  • 2013‎

Basal-like breast carcinomas (BLCs) present with extratumoral lymphovascular invasion, are highly metastatic, presumably through a hematogenous route, have augmented expression of CD44 oncoprotein and relatively low levels of retinoblastoma (Rb) tumor suppressor. However, the causal relation among these features is not clear. Here, we show that Rb acts as a key suppressor of multiple stages of metastatic progression. Firstly, Rb suppresses collective cell migration (CCM) and CD44-dependent formation of F-actin positive protrusions in vitro and cell-cluster based lymphovascular invasion in vivo. Secondly, Rb inhibits the release of single cancer cells and cell clusters into the hematogenous circulation and subsequent metastatic growth in lungs. Finally, CD44 expression is required for collective motility and all subsequent stages of metastatic progression initiated by loss of Rb function. Altogether, our results suggest that Rb/CD44 pathway is a crucial regulator of CCM and metastatic progression of BLCs and a promising target for anti-BLCs therapy.


DEK associates with tumor stage and outcome in HPV16 positive oropharyngeal squamous cell carcinoma.

  • Eric A Smith‎ et al.
  • Oncotarget‎
  • 2017‎

Oropharyngeal squamous cell carcinomas (OPSCC) are common, have poor outcomes, and comprise two biologically and clinically distinct diseases. While OPSCC that arise from human papillomavirus infections (HPV+) have better overall survival than their HPV- counterparts, the incidence of HPV+ OPSCC is increasing dramatically, affecting younger individuals which are often left with life-long co-morbidities from aggressive treatment. To identify patients which do poorly versus those who might benefit from milder regimens, risk-stratifying biomarkers are now needed within this population. One potential marker is the DEK oncoprotein, whose transcriptional upregulation in most malignancies is associated with chemotherapy resistance, advanced tumor stage, and worse outcomes. Herein, a retrospective case study was performed on DEK protein expression in therapy-naïve surgical resections from 194 OPSCC patients. We found that DEK was associated with advanced tumor stage, increased hazard of death, and interleukin IL6 expression in HPV16+ disease. Surprisingly, DEK levels in HPV16- OPSCC were not associated with advanced tumor stage or increased hazard of death. Overall, these findings mark HPV16- OPSCC as an exceptional malignancy were DEK expression does not correlate with outcome, and support the potential prognostic utility of DEK to identify aggressive HPV16+ disease.


FLASH Proton Pencil Beam Scanning Irradiation Minimizes Radiation-Induced Leg Contracture and Skin Toxicity in Mice.

  • Shannon Cunningham‎ et al.
  • Cancers‎
  • 2021‎

Ultra-high dose rate radiation has been reported to produce a more favorable toxicity and tumor control profile compared to conventional dose rates that are used for patient treatment. So far, the so-called FLASH effect has been validated for electron, photon and scattered proton beam, but not yet for proton pencil beam scanning (PBS). Because PBS is the state-of-the-art delivery modality for proton therapy and constitutes a wide and growing installation base, we determined the benefit of FLASH PBS on skin and soft tissue toxicity. Using a pencil beam scanning nozzle and the plateau region of a 250 MeV proton beam, a uniform physical dose of 35 Gy (toxicity study) or 15 Gy (tumor control study) was delivered to the right hind leg of mice at various dose rates: Sham, Conventional (Conv, 1 Gy/s), Flash60 (57 Gy/s) and Flash115 (115 Gy/s). Acute radiation effects were quantified by measurements of plasma and skin levels of TGF-β1 and skin toxicity scoring. Delayed irradiation response was defined by hind leg contracture as a surrogate of irradiation-induced skin and soft tissue toxicity and by plasma levels of 13 different cytokines (CXCL1, CXCL10, Eotaxin, IL1-beta, IL-6, MCP-1, Mip1alpha, TNF-alpha, TNF-beta, VEGF, G-CSF, GM-CSF and TGF- β1). Plasma and skin levels of TGF-β1, skin toxicity and leg contracture were all significantly decreased in FLASH compared to Conv groups of mice. FLASH and Conv PBS had similar efficacy with regards to growth control of MOC1 and MOC2 head and neck cancer cells transplanted into syngeneic, immunocompetent mice. These results demonstrate consistent delivery of FLASH PBS radiation from 1 to 115 Gy/s in a clinical gantry. Radiation response following delivery of 35 Gy indicates potential benefits of FLASH versus conventional PBS that are related to skin and soft tissue toxicity.


Patient-Derived Organotypic Epithelial Rafts Model Phenotypes in Juvenile-Onset Recurrent Respiratory Papillomatosis.

  • Mary C Bedard‎ et al.
  • Viruses‎
  • 2021‎

Juvenile-onset recurrent respiratory papillomatosis (JoRRP) is driven by human papillomavirus (HPV) low-risk strains and is associated with significant morbidity. While previous studies of 2D cultures have shed light on disease pathogenesis and demonstrated the utility of personalized medicine approaches, monolayer cultures lack the 3D tissue architecture and physiology of stratified, sequentially differentiated mucosal epithelium important in RRP disease pathogenesis. Herein we describe the establishment of JoRRP-derived primary cell populations that retain HPV genomes and viral gene expression in culture. These were directly compared to cells from matched adjacent non-diseased tissue, given the known RRP patient-to-patient variability. JoRRP papilloma versus control cells displayed decreased growth at subconfluency, with a switch to increased growth after reaching confluency, suggesting relative resistance to cell-cell contact and/or differentiation. The same papilloma cells grown as 3D organotypic rafts harbored hyperproliferation as compared to controls, with increased numbers of proliferating basal cells and inappropriately replicating suprabasal cells, mimicking phenotypes in the patient biopsies from which they were derived. These complementary model systems provide novel opportunities to elucidate disease mechanisms at distinct stages in JoRRP progression and to identify diagnostic, prognostic and therapeutic factors to personalize patient management and treatment.


BIRC2-BIRC3 amplification: a potentially druggable feature of a subset of head and neck cancers in patients with Fanconi anemia.

  • Khashayar Roohollahi‎ et al.
  • Scientific reports‎
  • 2022‎

Head-and-neck squamous cell carcinomas (HNSCCs) are relatively common in patients with Fanconi anemia (FA), a hereditary chromosomal instability disorder. Standard chemo-radiation therapy is not tolerated in FA due to an overall somatic hypersensitivity to such treatment. The question is how to find a suitable alternative treatment. We used whole-exome and whole genome mRNA sequencing to identify major genomic and transcriptomic events associated with FA-HNSCC. CRISPR-engineered FA-knockout models were used to validate a number of top hits that were likely to be druggable. We identified deletion of 18q21.2 and amplification of 11q22.2 as prevailing copy-number alterations in FA HNSCCs, the latter of which was associated with strong overexpression of the cancer-related genes YAP1, BIRC2, BIRC3 (at 11q22.1-2). We then found the drug AZD5582, a known small molecule inhibitor of BIRC2-3, to selectively kill FA tumor cells that overexpressed BIRC2-3. This occurred at drug concentrations that did not affect the viability of untransformed FA cells. Our data indicate that 11q22.2 amplifications are relatively common oncogenic events in FA-HNSCCs, as holds for non FA-HNSCC. Therefore, chemotherapeutic inhibition of overexpressed BIRC2-3 may provide the basis for an approach to develop a clinically realistic treatment of FA-HNSCCs that carry 11q22.2 amplifications.


Personalized Assessment of Normal Tissue Radiosensitivity via Transcriptome Response to Photon, Proton and Carbon Irradiation in Patient-Derived Human Intestinal Organoids.

  • Ali Nowrouzi‎ et al.
  • Cancers‎
  • 2020‎

Radiation-induced normal tissue toxicity often limits the curative treatment of cancer. Moreover, normal tissue relative biological effectiveness data for high-linear energy transfer particles are urgently needed. We propose a strategy based on transcriptome analysis of patient-derived human intestinal organoids (HIO) to determine molecular surrogates for radioresponse of gastrointestinal (GI) organs at risk in a personalized manner. HIO were generated from induced pluripotent stem cells (iPSC), which were derived from skin biopsies of three patients, including two patients with FANCA deficiency as a paradigm for enhanced radiosensitivity. For the two Fanconi anemia (FA) patients (HIO-104 and 106, previously published as FA-A#1 IND-iPS1 and FA-A#2 IND-iPS3), FANCA expression was reconstituted as a prerequisite for generation of HIO via lentiviral expression of a doxycycline inducible construct. For radiosensitivity analysis, FANCA deficient and FANCA rescued as well as wtHIO were sham treated or irradiated with 4Gy photon, proton or carbon ions at HIT, respectively. Immunofluorescence staining of HIO for 53BP1-foci was performed 1 h post IR and gene expression analyses was performed 12 and 48 h post IR. 53BP1-foci numbers and size correlated with the higher RBE of carbon ions. A FANCA dependent differential gene expression in response to radiation was found (p < 0.01, ANOVA; n = 1071 12 h; n = 1100 48 h). Pathways associated with FA and DNA-damage repair i.e., transcriptional coupled nucleotide excision repair, homology-directed repair and translational synthesis were found to be differentially regulated in FANCA deficient HIO. Next, differential regulated genes were investigated as a function of radiation quality (RQ, p < 0.05, ANOVA; n = 742 12 h; n = 553 48 h). Interestingly, a gradual increase or decrease of gene expression was found to correlate with the three main qualities, from photon to proton and carbon irradiation. Clustering separated high-linear energy transfer irradiation with carbons from proton and photon irradiation. Genes associated with dual incision steps of TC-NER were differentially regulated in photon vs. proton and carbon irradiation. Consequently, SUMO3, ALC1, POLE4, PCBP4, MUTYH expression correlated with the higher RBE of carbon ions. An interaction between the two studied parameters FA and RQ was identified (p < 0.01, 2-way ANOVA n = 476). A comparison of genes regulated as a function of FA, RQ and RBE suggest a role for p53 interacting genes BRD7, EWSR1, FBXO11, FBXW8, HMGB1, MAGED2, PCBP4, and RPS27 as modulators of FA in response to radiation. This proof of concept study demonstrates that patient tailored evaluation of GI response to radiation is feasible via generation of HIO and comparative transcriptome profiling. This methodology can now be further explored for a personalized assessment of GI radiosensitivity and RBE estimation.


Limited detection of human polyomaviruses in Fanconi anemia related squamous cell carcinoma.

  • Tuna Toptan‎ et al.
  • PloS one‎
  • 2018‎

Fanconi anemia is a rare genome instability disorder with extreme susceptibility to squamous cell carcinoma of the head and neck and anogenital tract. In patients with this inherited disorder, the risk of head and neck cancer is 800-fold higher than in the general population, a finding which might suggest a viral etiology. Here, we analyzed the possible contribution of human polyomaviruses to FA-associated head and neck squamous cell carcinoma (HNSCC) by a pan-polyomavirus immunohistochemistry test which detects the T antigens of all known human polyomaviruses. We observed weak reactivity in 17% of the HNSCC samples suggesting that based on classical criteria, human polyomaviruses are not causally related to squamous cell carcinomas analyzed in this study.


Overcoming Pluripotent Stem Cell Dependence on the Repair of Endogenous DNA Damage.

  • Timothy M Chlon‎ et al.
  • Stem cell reports‎
  • 2016‎

Pluripotent stem cells (PSCs) maintain a low mutation frequency compared with somatic cell types at least in part by preferentially utilizing error-free homologous recombination (HR) for DNA repair. Many endogenous metabolites cause DNA interstrand crosslinks, which are repaired by the Fanconi anemia (FA) pathway using HR. To determine the effect of failed repair of endogenous DNA lesions on PSC biology, we generated iPSCs harboring a conditional FA pathway. Upon FA pathway loss, iPSCs maintained pluripotency but underwent profound G2 arrest and apoptosis, whereas parental fibroblasts grew normally. Mechanistic studies revealed that G2-phase FA-deficient iPSCs possess large γH2AX-RAD51 foci indicative of accrued DNA damage, which correlated with activated DNA-damage signaling through CHK1. CHK1 inhibition specifically rescued the growth of FA-deficient iPSCs for prolonged culture periods, surprisingly without stimulating excessive karyotypic abnormalities. These studies reveal that PSCs possess hyperactive CHK1 signaling that restricts their self-renewal in the absence of error-free DNA repair.


The cyclic GMP/protein kinase G pathway as a therapeutic target in head and neck squamous cell carcinoma.

  • Traci R Tuttle‎ et al.
  • Cancer letters‎
  • 2016‎

Head and neck squamous cell carcinoma (HNSCC) is an aggressive disease with high mortality. Treatments, which can result in significant morbidity, have not substantially changed in three decades. The second messenger cyclic GMP (cGMP), which targets protein kinase G (PKG), is generated by guanylate cyclases (GCs), and is rapidly hydrolyzed by phosphodiesterases (PDEs). Activation of the cGMP/PKG pathway is antineoplastic in several cancer types, but its impact on HNSCC has not been fully exploited. We found differential expression of critical components of this pathway in four HNSCC cell lines. Several activators of soluble GC (sGC), as well as inhibitors of PDE5, increased intracellular cGMP, reduced cell viability, and induced apoptosis in HNSCC cells. The apoptotic effects of the sGC activator BAY 41-2272 and the PDE5 inhibitor Tadalafil (Cialis) were mediated by PKG. Furthermore, Tadalafil substantially reduced the growth of CAL27-derived tumors in athymic mice. Several drugs which either activate sGC or inhibit PDE5 are approved for treatment of nonmalignant conditions. These drugs could be repurposed as novel and effective therapeutics in patients with head and neck cancer.


Overexpression of the human DEK oncogene reprograms cellular metabolism and promotes glycolysis.

  • Marie C Matrka‎ et al.
  • PloS one‎
  • 2017‎

The DEK oncogene is overexpressed in many human malignancies including at early tumor stages. Our reported in vitro and in vivo models of squamous cell carcinoma have demonstrated that DEK contributes functionally to cellular and tumor survival and to proliferation. However, the underlying molecular mechanisms remain poorly understood. Based on recent RNA sequencing experiments, DEK expression was necessary for the transcription of several metabolic enzymes involved in anabolic pathways. This identified a possible mechanism whereby DEK may drive cellular metabolism to enable cell proliferation. Functional metabolic Seahorse analysis demonstrated increased baseline and maximum extracellular acidification rates, a readout of glycolysis, in DEK-overexpressing keratinocytes and squamous cell carcinoma cells. DEK overexpression also increased the maximum rate of oxygen consumption and therefore increased the potential for oxidative phosphorylation (OxPhos). To detect small metabolites that participate in glycolysis and the tricarboxylic acid cycle (TCA) that supplies substrate for OxPhos, we carried out NMR-based metabolomics studies. We found that high levels of DEK significantly reprogrammed cellular metabolism and altered the abundances of amino acids, TCA cycle intermediates and the glycolytic end products lactate, alanine and NAD+. Taken together, these data support a scenario whereby overexpression of the human DEK oncogene reprograms keratinocyte metabolism to fulfill energy and macromolecule demands required to enable and sustain cancer cell growth.


Single cell transcriptomic analysis of HPV16-infected epithelium identifies a keratinocyte subpopulation implicated in cancer.

  • Mary C Bedard‎ et al.
  • Nature communications‎
  • 2023‎

Persistent HPV16 infection is a major cause of the global cancer burden. The viral life cycle is dependent on the differentiation program of stratified squamous epithelium, but the landscape of keratinocyte subpopulations which support distinct phases of the viral life cycle has yet to be elucidated. Here, single cell RNA sequencing of HPV16 infected compared to uninfected organoids identifies twelve distinct keratinocyte populations, with a subset mapped to reconstruct their respective 3D geography in stratified squamous epithelium. Instead of conventional terminally differentiated cells, an HPV-reprogrammed keratinocyte subpopulation (HIDDEN cells) forms the surface compartment and requires overexpression of the ELF3/ESE-1 transcription factor. HIDDEN cells are detected throughout stages of human carcinogenesis including primary human cervical intraepithelial neoplasias and HPV positive head and neck cancers, and a possible role in promoting viral carcinogenesis is supported by TCGA analyses. Single cell transcriptome information on HPV-infected versus uninfected epithelium will enable broader studies of the role of individual keratinocyte subpopulations in tumor virus infection and cancer evolution.


IRAK1 is a novel DEK transcriptional target and is essential for head and neck cancer cell survival.

  • Allie K Adams‎ et al.
  • Oncotarget‎
  • 2015‎

The chromatin-binding DEK protein was recently reported to promote the growth of HPV+ and HPV- head and neck squamous cell carcinomas (HNSCCs). Relevant cellular and molecular mechanism(s) controlled by DEK in HNSCC remain poorly understood. While DEK is known to regulate specific transcriptional targets, global DEK-dependent gene networks in HNSCC are unknown. To identify DEK transcriptional signatures we performed RNA-Sequencing (RNA-Seq) in HNSCC cell lines that were either proficient or deficient for DEK. Bioinformatic analyses and subsequent validation revealed that IRAK1, a regulator of inflammatory signaling, and IRAK1-dependent regulatory networks were significantly repressed upon DEK knockdown in HNSCC. According to TCGA data, 14% of HNSCC specimens overexpressed IRAK1, thus supporting possible oncogenic functions. Furthermore, genetic or pharmacologic inhibition of IRAK1 in HNSCC cell lines was sufficient to attenuate downstream signaling such as ERK1/2 and to induce HNSCC cell death by apoptosis. Finally, targeting DEK and IRAK1 simultaneously enhanced cell death as compared to targeting either alone. Our findings reveal that IRAK1 promotes cell survival and is an attractive therapeutic target in HNSCC cells. Thus, we propose a model wherein IRAK1 stimulates tumor signaling and phenotypes both independently and in conjunction with DEK.


HPV Strain Predicts Severity of Juvenile-Onset Recurrent Respiratory Papillomatosis with Implications for Disease Screening.

  • Mary C Bedard‎ et al.
  • Cancers‎
  • 2021‎

Juvenile-onset recurrent respiratory papillomatosis (JoRRP) is the most common benign neoplasm of the larynx in children, presenting with significant variation in clinical course and potential for progression to malignancy. Since JoRRP is driven by human papillomavirus (HPV), we evaluated viral factors in a prospective cohort to identify predictive factors of disease severity. Twenty children with JoRRP undergoing routine debridement of papillomas were recruited and followed for ≥1 year. Demographical features, clinical severity scores, and surgeries over time were tabulated. Biopsies were used to establish a tissue bank and primary cell cultures for HPV6 vs. HPV11 genotyping and evaluation of viral gene expression. We found that patients with HPV11+ disease had an earlier age at disease onset, higher frequency of surgeries, increased number of lifetime surgeries, and were more likely to progress to malignancy. However, the amplitude of viral E6/E7 gene expression did not account for increased disease severity in HPV11+ patients. Determination of HPV strain is not routinely performed in the standard of care for JoRRP patients; we demonstrate the utility and feasibility of HPV genotyping using RNA-ISH for screening of HPV11+ disease as a biomarker for disease severity and progression in JoRRP patients.


Fanconi anemia-isogenic head and neck cancer cell line pairs: A basic and translational science resource.

  • Hiep Tai Nguyen‎ et al.
  • International journal of cancer‎
  • 2023‎

Fanconi anemia (FA) is a heritable malformation, bone marrow failure and cancer predisposition syndrome that confers an exceptionally high risk of squamous carcinomas. These carcinomas originate in epithelia lining the mouth, proximal esophagus, vulva and anus: their origins are not understood, and no effective ways have been identified to prevent or delay their appearance. Many FA-associated carcinomas are also therapeutically challenging: they may be multi-focal and stage-advanced at diagnosis, and most individuals with FA cannot tolerate standard-of-care systemic therapies such as DNA cross-linking drugs or ionizing radiation due to constitutional DNA damage hypersensitivity. We developed the Fanconi Anemia Cancer Cell Line Resource (FA-CCLR) to foster new work on the origins, treatment and prevention of FA-associated carcinomas. The FA-CCLR consists of Fanconi-isogenic head and neck squamous cell carcinoma (HNSCC) cell line pairs generated from five individuals with FA-associated HNSCC, and five individuals with sporadic HNSCC. Sporadic, isogenic HNSCC cell line pairs were generated in parallel with FA patient-derived isogenic cell line pairs to provide comparable experimental material to use to identify cell and molecular phenotypes driven by germline or somatic loss of Fanconi pathway function, and the subset of these FA-dependent phenotypes that can be modified, complemented or suppressed. All 10 FANC-isogenic cell line pairs are available to academic, non-profit and industry investigators via the "Fanconi Anemia Research Materials" Resource and Repository at Oregon Health & Sciences University, Portland OR.


The DEK oncogene is a target of steroid hormone receptor signaling in breast cancer.

  • Lisa M Privette Vinnedge‎ et al.
  • PloS one‎
  • 2012‎

Expression of estrogen and progesterone hormone receptors indicates a favorable prognosis due to the successful use of hormonal therapies such as tamoxifen and aromatase inhibitors. Unfortunately, 15-20% of patients will experience breast cancer recurrence despite continued use of tamoxifen. Drug resistance to hormonal therapies is of great clinical concern so it is imperative to identify novel molecular factors that contribute to tumorigenesis in hormone receptor positive cancers and/or mediate drug sensitivity. The hope is that targeted therapies, in combination with hormonal therapies, will improve survival and prevent recurrence. We have previously shown that the DEK oncogene, which is a chromatin remodeling protein, supports breast cancer cell proliferation, invasion and the maintenance of the breast cancer stem cell population. In this report, we demonstrate that DEK expression is associated with positive hormone receptor status in primary breast cancers and is up-regulated in vitro following exposure to the hormones estrogen, progesterone, and androgen. Chromatin immunoprecipitation experiments identify DEK as a novel estrogen receptor α (ERα) target gene whose expression promotes estrogen-induced proliferation. Finally, we report for the first time that DEK depletion enhances tamoxifen-induced cell death in ER+ breast cancer cell lines. Together, our data suggest that DEK promotes the pathogenesis of ER+ breast cancer and that the targeted inhibition of DEK may enhance the efficacy of conventional hormone therapies.


Dek overexpression in murine epithelia increases overt esophageal squamous cell carcinoma incidence.

  • Marie C Matrka‎ et al.
  • PLoS genetics‎
  • 2018‎

Esophageal cancer occurs as either squamous cell carcinoma (ESCC) or adenocarcinoma. ESCCs comprise almost 90% of cases worldwide, and recur with a less than 15% five-year survival rate despite available treatments. The identification of new ESCC drivers and therapeutic targets is critical for improving outcomes. Here we report that expression of the human DEK oncogene is strongly upregulated in esophageal SCC based on data in the cancer genome atlas (TCGA). DEK is a chromatin-associated protein with important roles in several nuclear processes including gene transcription, epigenetics, and DNA repair. Our previous data have utilized a murine knockout model to demonstrate that Dek expression is required for oral and esophageal SCC growth. Also, DEK overexpression in human keratinocytes, the cell of origin for SCC, was sufficient to cause hyperplasia in 3D organotypic raft cultures that mimic human skin, thus linking high DEK expression in keratinocytes to oncogenic phenotypes. However, the role of DEK over-expression in ESCC development remains unknown in human cells or genetic mouse models. To define the consequences of Dek overexpression in vivo, we generated and validated a tetracycline responsive Dek transgenic mouse model referred to as Bi-L-Dek. Dek overexpression was induced in the basal keratinocytes of stratified squamous epithelium by crossing Bi-L-Dek mice to keratin 5 tetracycline transactivator (K5-tTA) mice. Conditional transgene expression was validated in the resulting Bi-L-Dek_K5-tTA mice and was suppressed with doxycycline treatment in the tetracycline-off system. The mice were subjected to an established HNSCC and esophageal carcinogenesis protocol using the chemical carcinogen 4-nitroquinoline 1-oxide (4NQO). Dek overexpression stimulated gross esophageal tumor development, when compared to doxycycline treated control mice. Furthermore, high Dek expression caused a trend toward esophageal hyperplasia in 4NQO treated mice. Taken together, these data demonstrate that Dek overexpression in the cell of origin for SCC is sufficient to promote esophageal SCC development in vivo.


Esophageal Organoids from Human Pluripotent Stem Cells Delineate Sox2 Functions during Esophageal Specification.

  • Stephen L Trisno‎ et al.
  • Cell stem cell‎
  • 2018‎

Tracheal and esophageal disorders are prevalent in humans and difficult to accurately model in mice. We therefore established a three-dimensional organoid model of esophageal development through directed differentiation of human pluripotent stem cells. Sequential manipulation of bone morphogenic protein (BMP), Wnt, and RA signaling pathways was required to pattern definitive endoderm into foregut, anterior foregut (AFG), and dorsal AFG spheroids. Dorsal AFG spheroids grown in a 3D matrix formed human esophageal organoids (HEOs), and HEO cells could be transitioned into two-dimensional cultures and grown as esophageal organotypic rafts. In both configurations, esophageal tissues had proliferative basal progenitors and a differentiated stratified squamous epithelium. Using HEO cultures to model human esophageal birth defects, we identified that Sox2 promotes esophageal specification in part through repressing Wnt signaling in dorsal AFG and promoting survival. Consistently, Sox2 ablation in mice causes esophageal agenesis. Thus, HEOs present a powerful platform for modeling human pathologies and tissue engineering.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: