Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 3 papers out of 3 papers

Down-regulation of nicotinamide N-methyltransferase induces apoptosis in human breast cancer cells via the mitochondria-mediated pathway.

  • Jun Zhang‎ et al.
  • PloS one‎
  • 2014‎

Nicotinamide N-methyltransferase (NNMT) has been found involved in cell proliferation of several malignancies. However, the functional role of NNMT in breast cancer has not been elucidated. In the present study, we showed that NNMT was selectively expressed in some breast cancer cell lines, down-regulation of NNMT expression in Bcap-37 and MDA-MB-231 cell lines by NNMT shRNA significantly inhibited cell growth in vitro, decreased tumorigenicity in mice and induced apoptosis. The silencing reciprocal effect of NNMT was confirmed by over-expressing NNMT in the MCF-7 and SK-BR-3 breast cancer cell lines which lack constitutive expression of NNMT. In addition, down-regulation of NNMT expression resulted in reducing expression of Bcl-2 and Bcl-xL, up-regulation of Bax, Puma, cleaved caspase-9, cleaved caspase-3 and cleaved PARP, increasing reactive oxygen species production and release of cytochrome c from mitochondria, and decreasing the phosphorylation of Akt and ERK1/2. These data suggest that down-regulation of NNMT induces apoptosis via the mitochondria-mediated pathway in breast cancer cells.


A seleno-hormetine protects bone marrow hematopoietic cells against ionizing radiation-induced toxicities.

  • Desirée Bartolini‎ et al.
  • PloS one‎
  • 2019‎

2,2'-diselenyldibenzoic acid (DSBA) is a chemical probe produced to explore the pharmacological properties of diphenyldiselenide-derived agents with seleno-hormetic activity undergoing preclinical development. The present study was designed to verify in vivo the drug's properties and to determine mechanistically how these may mediate the protection of tissues against stress conditions, exemplified by ionizing radiation induced damage in mouse bone marrow. In murine bone marrow hematopoietic cells, the drug initiated the activation of the Nrf2 transcription factor resulting in enhanced expression of downstream stress response genes. This type of response was confirmed in human liver cells and included enhanced expression of glutathione S-transferases (GST), important in the metabolism and pharmacological function of seleno-compounds. In C57 BL/6 mice, DSBA prevented the suppression of bone marrow hematopoietic cells caused by ionizing radiation exposure. Such in vivo prevention effects were associated with Nrf2 pathway activation in both bone marrow cells and liver tissue. These findings demonstrated for the first time the pharmacological properties of DSBA in vivo, suggesting a practical application for this type of Se-hormetic molecules as a radioprotective and/or prevention agents in cancer treatments.


A systematic review of machine learning models for predicting outcomes of stroke with structured data.

  • Wenjuan Wang‎ et al.
  • PloS one‎
  • 2020‎

Machine learning (ML) has attracted much attention with the hope that it could make use of large, routinely collected datasets and deliver accurate personalised prognosis. The aim of this systematic review is to identify and critically appraise the reporting and developing of ML models for predicting outcomes after stroke.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: