Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 22 papers

Medulloblastoma-associated DDX3 variant selectively alters the translational response to stress.

  • Sekyung Oh‎ et al.
  • Oncotarget‎
  • 2016‎

DDX3X encodes a DEAD-box family RNA helicase (DDX3) commonly mutated in medulloblastoma, a highly aggressive cerebellar tumor affecting both children and adults. Despite being implicated in several facets of RNA metabolism, the nature and scope of DDX3's interactions with RNA remain unclear. Here, we show DDX3 collaborates extensively with the translation initiation machinery through direct binding to 5'UTRs of nearly all coding RNAs, specific sites on the 18S rRNA, and multiple components of the translation initiation complex. Impairment of translation initiation is also evident in primary medulloblastomas harboring mutations in DDX3X, further highlighting DDX3's role in this process. Arsenite-induced stress shifts DDX3 binding from the 5'UTR into the coding region of mRNAs concomitant with a general reduction of translation, and both the shift of DDX3 on mRNA and decreased translation are blunted by expression of a catalytically-impaired, medulloblastoma-associated DDX3R534H variant. Furthermore, despite the global repression of translation induced by arsenite, translation is preserved on select genes involved in chromatin organization in DDX3R534H-expressing cells. Thus, DDX3 interacts extensively with RNA and ribosomal machinery to help remodel the translation landscape in response to stress, while cancer-related DDX3 variants adapt this response to selectively preserve translation.


PTBP1 mRNA isoforms and regulation of their translation.

  • Luisa M Arake de Tacca‎ et al.
  • RNA (New York, N.Y.)‎
  • 2019‎

Polypyrimidine tract-binding proteins (PTBPs) are RNA binding proteins that regulate a number of posttranscriptional events. Human PTBP1 transits between the nucleus and cytoplasm and is thought to regulate RNA processes in both. However, information about PTBP1 mRNA isoforms and regulation of PTPB1 expression remains incomplete. Here we mapped the major PTBP1 mRNA isoforms in HEK293T cells and identified alternative 5' and 3' untranslated regions (5'-UTRs, 3'-UTRs), as well as alternative splicing patterns in the protein coding region. We also assessed how the observed PTBP1 mRNA isoforms contribute to PTBP1 expression in different phases of the cell cycle. Previously, PTBP1 mRNAs were shown to crosslink to eukaryotic translation initiation factor 3 (eIF3). We find that eIF3 binds differently to each PTBP1 mRNA isoform in a cell cycle dependent manner. We also observe a strong correlation between eIF3 binding to PTBP1 mRNAs and repression of PTBP1 levels during the S phase of the cell cycle. Our results provide evidence of translational regulation of PTBP1 protein levels during the cell cycle, which may affect downstream regulation of alternative splicing and translation mediated by PTBP1 protein isoforms.


Directed evolution of the rRNA methylating enzyme Cfr reveals molecular basis of antibiotic resistance.

  • Kaitlyn Tsai‎ et al.
  • eLife‎
  • 2022‎

Alteration of antibiotic binding sites through modification of ribosomal RNA (rRNA) is a common form of resistance to ribosome-targeting antibiotics. The rRNA-modifying enzyme Cfr methylates an adenosine nucleotide within the peptidyl transferase center, resulting in the C-8 methylation of A2503 (m8A2503). Acquisition of cfr results in resistance to eight classes of ribosome-targeting antibiotics. Despite the prevalence of this resistance mechanism, it is poorly understood whether and how bacteria modulate Cfr methylation to adapt to antibiotic pressure. Moreover, direct evidence for how m8A2503 alters antibiotic binding sites within the ribosome is lacking. In this study, we performed directed evolution of Cfr under antibiotic selection to generate Cfr variants that confer increased resistance by enhancing methylation of A2503 in cells. Increased rRNA methylation is achieved by improved expression and stability of Cfr through transcriptional and post-transcriptional mechanisms, which may be exploited by pathogens under antibiotic stress as suggested by natural isolates. Using a variant that achieves near-stoichiometric methylation of rRNA, we determined a 2.2 Å cryo-electron microscopy structure of the Cfr-modified ribosome. Our structure reveals the molecular basis for broad resistance to antibiotics and will inform the design of new antibiotics that overcome resistance mediated by Cfr.


DDX3 depletion represses translation of mRNAs with complex 5' UTRs.

  • Lorenzo Calviello‎ et al.
  • Nucleic acids research‎
  • 2021‎

DDX3 is an RNA chaperone of the DEAD-box family that regulates translation. Ded1, the yeast ortholog of DDX3, is a global regulator of translation, whereas DDX3 is thought to preferentially affect a subset of mRNAs. However, the set of mRNAs that are regulated by DDX3 are unknown, along with the relationship between DDX3 binding and activity. Here, we use ribosome profiling, RNA-seq, and PAR-CLIP to define the set of mRNAs that are regulated by DDX3 in human cells. We find that while DDX3 binds highly expressed mRNAs, depletion of DDX3 particularly affects the translation of a small subset of the transcriptome. We further find that DDX3 binds a site on helix 16 of the human ribosomal rRNA, placing it immediately adjacent to the mRNA entry channel. Translation changes caused by depleting DDX3 levels or expressing an inactive point mutation are different, consistent with different association of these genetic variant types with disease. Taken together, this work defines the subset of the transcriptome that is responsive to DDX3 inhibition, with relevance for basic biology and disease states where DDX3 is altered.


A Legionella toxin exhibits tRNA mimicry and glycosyl transferase activity to target the translation machinery and trigger a ribotoxic stress response.

  • Advait Subramanian‎ et al.
  • Nature cell biology‎
  • 2023‎

A widespread strategy employed by pathogens to establish infection is to inhibit host-cell protein synthesis. Legionella pneumophila, an intracellular bacterial pathogen and the causative organism of Legionnaires' disease, secretes a subset of protein effectors into host cells that inhibit translation elongation. Mechanistic insights into how the bacterium targets translation elongation remain poorly defined. We report here that the Legionella effector SidI functions in an unprecedented way as a transfer-RNA mimic that directly binds to and glycosylates the ribosome. The 3.1 Å cryo-electron microscopy structure of SidI reveals an N-terminal domain with an 'inverted L' shape and surface-charge distribution characteristic of tRNA mimicry, and a C-terminal domain that adopts a glycosyl transferase fold that licenses SidI to utilize GDP-mannose as a sugar precursor. This coupling of tRNA mimicry and enzymatic action endows SidI with the ability to block protein synthesis with a potency comparable to ricin, one of the most powerful toxins known. In Legionella-infected cells, the translational pausing activated by SidI elicits a stress response signature mimicking the ribotoxic stress response, which is activated by elongation inhibitors that induce ribosome collisions. SidI-mediated effects on the ribosome activate the stress kinases ZAKα and p38, which in turn drive an accumulation of the protein activating transcription factor 3 (ATF3). Intriguingly, ATF3 escapes the translation block imposed by SidI, translocates to the nucleus and orchestrates the transcription of stress-inducible genes that promote cell death, revealing a major role for ATF3 in the response to collided ribosome stress. Together, our findings elucidate a novel mechanism by which a pathogenic bacterium employs tRNA mimicry to hijack a ribosome-to-nuclear signalling pathway that regulates cell fate.


Nucleolar dynamics are determined by the ordered assembly of the ribosome.

  • Jessica Sheu-Gruttadauria‎ et al.
  • bioRxiv : the preprint server for biology‎
  • 2023‎

Ribosome biogenesis is coordinated within the nucleolus, a biomolecular condensate that exhibits dynamic material properties that are thought to be important for nucleolar function. However, the relationship between ribosome assembly and nucleolar dynamics is not clear. Here, we screened 364 genes involved in ribosome biogenesis and RNA metabolism for their impact on dynamics of the nucleolus, as measured by automated, high-throughput fluorescence recovery after photobleaching (FRAP) of the nucleolar scaffold protein NPM1. This screen revealed that gene knockdowns that caused accumulation of early rRNA intermediates were associated with nucleolar rigidification, while accumulation of late intermediates led to increased fluidity. These shifts in dynamics were accompanied by distinct changes in nucleolar morphology. We also found that genes involved in mRNA processing impact nucleolar dynamics, revealing connections between ribosome biogenesis and other RNA processing pathways. Together, this work defines mechanistic ties between ribosome assembly and the biophysical features of the nucleolus, while establishing a toolbox for understanding how molecular dynamics impact function across other biomolecular condensates.


A ubiquitous GC content signature underlies multimodal mRNA regulation by DDX3X.

  • Ziad Jowhar‎ et al.
  • Molecular systems biology‎
  • 2024‎

The road from transcription to protein synthesis is paved with many obstacles, allowing for several modes of post-transcriptional regulation of gene expression. A fundamental player in mRNA biology is DDX3X, an RNA binding protein that canonically regulates mRNA translation. By monitoring dynamics of mRNA abundance and translation following DDX3X depletion, we observe stabilization of translationally suppressed mRNAs. We use interpretable statistical learning models to uncover GC content in the coding sequence as the major feature underlying RNA stabilization. This result corroborates GC content-related mRNA regulation detectable in other studies, including hundreds of ENCODE datasets and recent work focusing on mRNA dynamics in the cell cycle. We provide further evidence for mRNA stabilization by detailed analysis of RNA-seq profiles in hundreds of samples, including a Ddx3x conditional knockout mouse model exhibiting cell cycle and neurogenesis defects. Our study identifies a ubiquitous feature underlying mRNA regulation and highlights the importance of quantifying multiple steps of the gene expression cascade, where RNA abundance and protein production are often uncoupled.


The Translation Inhibitor Rocaglamide Targets a Bimolecular Cavity between eIF4A and Polypurine RNA.

  • Shintaro Iwasaki‎ et al.
  • Molecular cell‎
  • 2019‎

A class of translation inhibitors, exemplified by the natural product rocaglamide A (RocA), isolated from Aglaia genus plants, exhibits antitumor activity by clamping eukaryotic translation initiation factor 4A (eIF4A) onto polypurine sequences in mRNAs. This unusual inhibitory mechanism raises the question of how the drug imposes sequence selectivity onto a general translation factor. Here, we determined the crystal structure of the human eIF4A1⋅ATP analog⋅RocA⋅polypurine RNA complex. RocA targets the "bi-molecular cavity" formed characteristically by eIF4A1 and a sharply bent pair of consecutive purines in the RNA. Natural amino acid substitutions found in Aglaia eIF4As changed the cavity shape, leading to RocA resistance. This study provides an example of an RNA-sequence-selective interfacial inhibitor fitting into the space shaped cooperatively by protein and RNA with specific sequences.


Rocaglates convert DEAD-box protein eIF4A into a sequence-selective translational repressor.

  • Shintaro Iwasaki‎ et al.
  • Nature‎
  • 2016‎

Rocaglamide A (RocA) typifies a class of protein synthesis inhibitors that selectively kill aneuploid tumour cells and repress translation of specific messenger RNAs. RocA targets eukaryotic initiation factor 4A (eIF4A), an ATP-dependent DEAD-box RNA helicase; its messenger RNA selectivity is proposed to reflect highly structured 5' untranslated regions that depend strongly on eIF4A-mediated unwinding. However, rocaglate treatment may not phenocopy the loss of eIF4A activity, as these drugs actually increase the affinity between eIF4A and RNA. Here we show that secondary structure in 5' untranslated regions is only a minor determinant for RocA selectivity and that RocA does not repress translation by reducing eIF4A availability. Rather, in vitro and in cells, RocA specifically clamps eIF4A onto polypurine sequences in an ATP-independent manner. This artificially clamped eIF4A blocks 43S scanning, leading to premature, upstream translation initiation and reducing protein expression from transcripts bearing the RocA-eIF4A target sequence. In elucidating the mechanism of selective translation repression by this lead anti-cancer compound, we provide an example of a drug stabilizing sequence-selective RNA-protein interactions.


Active site conformational dynamics are coupled to catalysis in the mRNA decapping enzyme Dcp2.

  • Robin A Aglietti‎ et al.
  • Structure (London, England : 1993)‎
  • 2013‎

Removal of the 5' cap structure by Dcp2 is a major step in several 5'-3' mRNA decay pathways. The activity of Dcp2 is enhanced by Dcp1 and bound coactivators, yet the details of how these interactions are linked to chemistry are poorly understood. Here, we report three crystal structures of the catalytic Nudix hydrolase domain of Dcp2 that demonstrate binding of a catalytically essential metal ion, and enzyme kinetics are used to identify several key active site residues involved in acid/base chemistry of decapping. Using nuclear magnetic resonance and molecular dynamics, we find that a conserved metal binding loop on the catalytic domain undergoes conformational changes during the catalytic cycle. These findings describe key events during the chemical step of decapping, suggest local active site conformational changes are important for activity, and provide a framework to explain stimulation of catalysis by the regulatory domain of Dcp2 and associated coactivators.


Pathogenic DDX3X Mutations Impair RNA Metabolism and Neurogenesis during Fetal Cortical Development.

  • Ashley L Lennox‎ et al.
  • Neuron‎
  • 2020‎

De novo germline mutations in the RNA helicase DDX3X account for 1%-3% of unexplained intellectual disability (ID) cases in females and are associated with autism, brain malformations, and epilepsy. Yet, the developmental and molecular mechanisms by which DDX3X mutations impair brain function are unknown. Here, we use human and mouse genetics and cell biological and biochemical approaches to elucidate mechanisms by which pathogenic DDX3X variants disrupt brain development. We report the largest clinical cohort to date with DDX3X mutations (n = 107), demonstrating a striking correlation between recurrent dominant missense mutations, polymicrogyria, and the most severe clinical outcomes. We show that Ddx3x controls cortical development by regulating neuron generation. Severe DDX3X missense mutations profoundly disrupt RNA helicase activity, induce ectopic RNA-protein granules in neural progenitors and neurons, and impair translation. Together, these results uncover key mechanisms underlying DDX3X syndrome and highlight aberrant RNA metabolism in the pathogenesis of neurodevelopmental disease.


A SARS-CoV-2 protein interaction map reveals targets for drug repurposing.

  • David E Gordon‎ et al.
  • Nature‎
  • 2020‎

A newly described coronavirus named severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which is the causative agent of coronavirus disease 2019 (COVID-19), has infected over 2.3 million people, led to the death of more than 160,000 individuals and caused worldwide social and economic disruption1,2. There are no antiviral drugs with proven clinical efficacy for the treatment of COVID-19, nor are there any vaccines that prevent infection with SARS-CoV-2, and efforts to develop drugs and vaccines are hampered by the limited knowledge of the molecular details of how SARS-CoV-2 infects cells. Here we cloned, tagged and expressed 26 of the 29 SARS-CoV-2 proteins in human cells and identified the human proteins that physically associated with each of the SARS-CoV-2 proteins using affinity-purification mass spectrometry, identifying 332 high-confidence protein-protein interactions between SARS-CoV-2 and human proteins. Among these, we identify 66 druggable human proteins or host factors targeted by 69 compounds (of which, 29 drugs are approved by the US Food and Drug Administration, 12 are in clinical trials and 28 are preclinical compounds). We screened a subset of these in multiple viral assays and found two sets of pharmacological agents that displayed antiviral activity: inhibitors of mRNA translation and predicted regulators of the sigma-1 and sigma-2 receptors. Further studies of these host-factor-targeting agents, including their combination with drugs that directly target viral enzymes, could lead to a therapeutic regimen to treat COVID-19.


Tunable protein synthesis by transcript isoforms in human cells.

  • Stephen N Floor‎ et al.
  • eLife‎
  • 2016‎

Eukaryotic genes generate multiple RNA transcript isoforms though alternative transcription, splicing, and polyadenylation. However, the relationship between human transcript diversity and protein production is complex as each isoform can be translated differently. We fractionated a polysome profile and reconstructed transcript isoforms from each fraction, which we term Transcript Isoforms in Polysomes sequencing (TrIP-seq). Analysis of these data revealed regulatory features that control ribosome occupancy and translational output of each transcript isoform. We extracted a panel of 5' and 3' untranslated regions that control protein production from an unrelated gene in cells over a 100-fold range. Select 5' untranslated regions exert robust translational control between cell lines, while 3' untranslated regions can confer cell type-specific expression. These results expose the large dynamic range of transcript-isoform-specific translational control, identify isoform-specific sequences that control protein output in human cells, and demonstrate that transcript isoform diversity must be considered when relating RNA and protein levels.


Aberrant cortical development is driven by impaired cell cycle and translational control in a DDX3X syndrome model.

  • Mariah L Hoye‎ et al.
  • eLife‎
  • 2022‎

Mutations in the RNA helicase, DDX3X, are a leading cause of Intellectual Disability and present as DDX3X syndrome, a neurodevelopmental disorder associated with cortical malformations and autism. Yet, the cellular and molecular mechanisms by which DDX3X controls cortical development are largely unknown. Here, using a mouse model of Ddx3x loss-of-function we demonstrate that DDX3X directs translational and cell cycle control of neural progenitors, which underlies precise corticogenesis. First, we show brain development is sensitive to Ddx3x dosage; complete Ddx3x loss from neural progenitors causes microcephaly in females, whereas hemizygous males and heterozygous females show reduced neurogenesis without marked microcephaly. In addition, Ddx3x loss is sexually dimorphic, as its paralog, Ddx3y, compensates for Ddx3x in the developing male neocortex. Using live imaging of progenitors, we show that DDX3X promotes neuronal generation by regulating both cell cycle duration and neurogenic divisions. Finally, we use ribosome profiling in vivo to discover the repertoire of translated transcripts in neural progenitors, including those which are DDX3X-dependent and essential for neurogenesis. Our study reveals invaluable new insights into the etiology of DDX3X syndrome, implicating dysregulated progenitor cell cycle dynamics and translation as pathogenic mechanisms.


Compromised nonsense-mediated RNA decay results in truncated RNA-binding protein production upon DUX4 expression.

  • Amy E Campbell‎ et al.
  • Cell reports‎
  • 2023‎

Nonsense-mediated RNA decay (NMD) degrades transcripts carrying premature termination codons. NMD is thought to prevent the synthesis of toxic truncated proteins. However, whether loss of NMD results in widespread production of truncated proteins is unclear. A human genetic disease, facioscapulohumeral muscular dystrophy (FSHD), features acute inhibition of NMD upon expression of the disease-causing transcription factor, DUX4. Using a cell-based model of FSHD, we show production of truncated proteins from physiological NMD targets and find that RNA-binding proteins are enriched for aberrant truncations. The NMD isoform of one RNA-binding protein, SRSF3, is translated to produce a stable truncated protein, which is detected in FSHD patient-derived myotubes. Ectopic expression of truncated SRSF3 confers toxicity, and its downregulation is cytoprotective. Our results delineate the genome-scale impact of NMD loss. This widespread production of potentially deleterious truncated proteins has implications for FSHD biology as well as other genetic diseases where NMD is therapeutically modulated.


Protein-protein interactions with G3BPs drive stress granule condensation and gene expression changes under cellular stress.

  • José M Liboy-Lugo‎ et al.
  • bioRxiv : the preprint server for biology‎
  • 2024‎

Stress granules (SGs) are macromolecular assemblies that form under cellular stress. Formation of these condensates is driven by the condensation of RNA and RNA-binding proteins such as G3BPs. G3BPs condense into SGs following stress-induced translational arrest. Three G3BP paralogs (G3BP1, G3BP2A, and G3BP2B) have been identified in vertebrates. However, the contribution of different G3BP paralogs to stress granule formation and stress-induced gene expression changes is incompletely understood. Here, we identified key residues for G3BP condensation such as V11. This conserved amino acid is required for formation of the G3BP-Caprin-1 complex, hence promoting SG assembly. Total RNA sequencing and ribosome profiling revealed that disruption of G3BP condensation corresponds to changes in mRNA levels and ribosome engagement during the integrated stress response (ISR). Moreover, we found that G3BP2B preferentially condenses and promotes changes in mRNA expression under endoplasmic reticulum (ER) stress. Together, this work suggests that stress granule assembly promotes changes in gene expression under cellular stress, which is differentially regulated by G3BP paralogs.


Dual targeting of DDX3 and eIF4A by the translation inhibitor rocaglamide A.

  • Mingming Chen‎ et al.
  • Cell chemical biology‎
  • 2021‎

The translation inhibitor rocaglamide A (RocA) has shown promising antitumor activity because it uniquely clamps eukaryotic initiation factor (eIF) 4A onto polypurine RNA for selective translational repression. As eIF4A has been speculated to be a unique target of RocA, alternative targets have not been investigated. Here, we reveal that DDX3 is another molecular target of RocA. Proximity-specific fluorescence labeling of an O-nitrobenzoxadiazole-conjugated derivative revealed that RocA binds to DDX3. RocA clamps the DDX3 protein onto polypurine RNA in an ATP-independent manner. Analysis of a de novo-assembled transcriptome from the plant Aglaia, a natural source of RocA, uncovered the amino acid critical for RocA binding. Moreover, ribosome profiling showed that because of the dominant-negative effect of RocA, high expression of eIF4A and DDX3 strengthens translational repression in cancer cells. This study indicates that sequence-selective clamping of DDX3 and eIF4A, and subsequent dominant-negative translational repression by RocA determine its tumor toxicity.


SRSF1 governs progenitor-specific alternative splicing to maintain adult epithelial tissue homeostasis and renewal.

  • Tingsheng Yu‎ et al.
  • Developmental cell‎
  • 2022‎

Alternative splicing generates distinct mRNA variants and is essential for development, homeostasis, and renewal. Proteins of the serine/arginine (SR)-rich splicing factor family are major splicing regulators that are broadly required for organ development as well as cell and organism viability. However, how these proteins support adult organ function remains largely unknown. Here, we used the continuously growing mouse incisor as a model to dissect the functions of the prototypical SR family protein SRSF1 during tissue homeostasis and renewal. We identified an SRSF1-governed alternative splicing network that is specifically required for dental proliferation and survival of progenitors but dispensable for the viability of differentiated cells. We also observed a similar progenitor-specific role of SRSF1 in the small intestinal epithelium, indicating a conserved function of SRSF1 across adult epithelial tissues. Thus, our findings define a regulatory mechanism by which SRSF1 specifically controls progenitor-specific alternative splicing events to support adult tissue homeostasis and renewal.


DDX3X and DDX3Y are redundant in protein synthesis.

  • Srivats Venkataramanan‎ et al.
  • RNA (New York, N.Y.)‎
  • 2021‎

DDX3 is a DEAD-box RNA helicase that regulates translation and is encoded by the X- and Y-linked paralogs DDX3X and DDX3Y While DDX3X is ubiquitously expressed in human tissues and essential for viability, DDX3Y is male-specific and shows lower and more variable expression than DDX3X in somatic tissues. Heterozygous genetic lesions in DDX3X mediate a class of developmental disorders called DDX3X syndrome, while loss of DDX3Y is implicated in male infertility. One possible explanation for female-bias in DDX3X syndrome is that DDX3Y encodes a polypeptide with different biochemical activity. In this study, we use ribosome profiling and in vitro translation to demonstrate that the X- and Y-linked paralogs of DDX3 play functionally redundant roles in translation. We find that transcripts that are sensitive to DDX3X depletion or mutation are rescued by complementation with DDX3Y. Our data indicate that DDX3X and DDX3Y proteins can functionally complement each other in the context of mRNA translation in human cells. DDX3Y is not expressed in a large fraction of the central nervous system. These findings suggest that expression differences, not differences in paralog-dependent protein synthesis, underlie the sex-bias of DDX3X-associated diseases.


A ubiquitous GC content signature underlies multimodal mRNA regulation by DDX3X.

  • Ziad Jowhar‎ et al.
  • bioRxiv : the preprint server for biology‎
  • 2023‎

The road from transcription to protein synthesis is paved with many obstacles, allowing for several modes of post-transcriptional regulation of gene expression. A fundamental player in mRNA biology is DDX3X, an RNA binding protein that canonically regulates mRNA translation. By monitoring dynamics of mRNA abundance and translation following DDX3X depletion, we observe stabilization of translationally suppressed mRNAs. We use interpretable statistical learning models to uncover GC content in the coding sequence as the major feature underlying RNA stabilization. This result corroborates GC content-related mRNA regulation detectable in other studies, including hundreds of ENCODE datasets and recent work focusing on mRNA dynamics in the cell cycle. We provide further evidence for mRNA stabilization by detailed analysis of RNA-seq profiles in hundreds of samples, including a Ddx3x conditional knockout mouse model exhibiting cell cycle and neurogenesis defects. Our study identifies a ubiquitous feature underlying mRNA regulation and highlights the importance of quantifying multiple steps of the gene expression cascade, where RNA abundance and protein production are often uncoupled.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: