Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 68 papers

Acetylation of the Cd8 Locus by KAT6A Determines Memory T Cell Diversity.

  • Dane M Newman‎ et al.
  • Cell reports‎
  • 2016‎

How functionally diverse populations of pathogen-specific killer T cells are generated during an immune response remains unclear. Here, we propose that fine-tuning of CD8αβ co-receptor levels via histone acetylation plays a role in lineage fate. We show that lysine acetyltransferase 6A (KAT6A) is responsible for maintaining permissive Cd8 gene transcription and enabling robust effector responses during infection. KAT6A-deficient CD8(+) T cells downregulated surface CD8 co-receptor expression during clonal expansion, a finding linked to reduced Cd8α transcripts and histone-H3 lysine 9 acetylation of the Cd8 locus. Loss of CD8 expression in KAT6A-deficient T cells correlated with reduced TCR signaling intensity and accelerated contraction of the effector-like memory compartment, whereas the long-lived memory compartment appeared unaffected, a result phenocopied by the removal of the Cd8 E8I enhancer element. These findings suggest a direct role of CD8αβ co-receptor expression and histone acetylation in shaping functional diversity within the cytotoxic T cell pool.


MOZ regulates B-cell progenitors and, consequently, Moz haploinsufficiency dramatically retards MYC-induced lymphoma development.

  • Bilal N Sheikh‎ et al.
  • Blood‎
  • 2015‎

The histone acetyltransferase MOZ (MYST3, KAT6A) is the target of recurrent chromosomal translocations fusing the MOZ gene to CBP, p300, NCOA3, or TIF2 in particularly aggressive cases of acute myeloid leukemia. In this study, we report the role of wild-type MOZ in regulating B-cell progenitor proliferation and hematopoietic malignancy. In the Eμ-Myc model of aggressive pre-B/B-cell lymphoma, the loss of just one allele of Moz increased the median survival of mice by 3.9-fold. MOZ was required to maintain the proliferative capacity of B-cell progenitors, even in the presence of c-MYC overexpression, by directly maintaining the transcriptional activity of genes required for normal B-cell development. Hence, B-cell progenitor numbers were significantly reduced in Moz haploinsufficient animals. Interestingly, we find a significant overlap in genes regulated by MOZ, mixed lineage leukemia 1, and mixed lineage leukemia 1 cofactor menin. This includes Meis1, a TALE class homeobox transcription factor required for B-cell development, characteristically upregulated as a result of MLL1 translocations in leukemia. We demonstrate that MOZ localizes to the Meis1 locus in pre-B-cells and maintains Meis1 expression. Our results suggest that even partial inhibition of MOZ may reduce the proliferative capacity of MEIS1, and HOX-driven lymphoma and leukemia cells.


Effect of thymic stimulation of CD4+ T cell expansion on disease onset and progression in mutant SOD1 mice.

  • Rebecca K Sheean‎ et al.
  • Journal of neuroinflammation‎
  • 2015‎

The peripheral immune system is implicated in modulating microglial activation, neurodegeneration and disease progression in amyotrophic lateral sclerosis (ALS). Specifically, there is reduced thymic function and regulatory T cell (Treg) number in ALS patients and mutant superoxide dismutase 1 (SOD1) mice, while passive transfer of Tregs ameliorates disease in mutant SOD1 mice. Here, we assessed the effects of augmenting endogenous CD4+ T cell number by stimulating the thymus using surgical castration on the phenotype of transgenic SOD1(G93A) mice.


PU.1 downregulation in murine radiation-induced acute myeloid leukaemia (AML): from molecular mechanism to human AML.

  • Tom Verbiest‎ et al.
  • Carcinogenesis‎
  • 2015‎

The transcription factor PU.1, encoded by the murine Sfpi1 gene (SPI1 in humans), is a member of the Ets transcription factor family and plays a vital role in commitment and maturation of the myeloid and lymphoid lineages. Murine studies directly link primary acute myeloid leukaemia (AML) and decreased PU.1 expression in specifically modified strains. Similarly, a radiation-induced chromosome 2 deletion and subsequent Sfpi1 point mutation in the remaining allele lead to murine radiation-induced AML. Consistent with murine data, heterozygous deletion of the SPI1 locus and mutation of the -14kb SPI1 upstream regulatory element were described previously in human primary AML, although they are rare events. Other mechanisms linked to PU.1 downregulation in human AML include TP53 deletion, FLT3-ITD mutation and the recurrent AML1-ETO [t(8;21)] and PML-RARA [t(15;17)] translocations. This review provides an up-to-date overview on our current understanding of the involvement of PU.1 in the initiation and development of radiation-induced AML, together with recommendations for future murine and human studies.


Transcription Factor PU.1 Promotes Conventional Dendritic Cell Identity and Function via Induction of Transcriptional Regulator DC-SCRIPT.

  • Michaël Chopin‎ et al.
  • Immunity‎
  • 2019‎

Dendritic cells (DCs) are can be broadly divided into conventional (cDC) and plasmacytoid (pDC) subsets. Despite the importance of this lineage diversity, its genetic basis is not fully understood. We found that conditional ablation of the Ets-family transcription factor PU.1 in DC-restricted progenitors led to increased pDC production at the expense of cDCs. PU.1 controlled many of the cardinal functions of DCs, such as antigen presentation by cDCs and type I interferon production by pDCs. Conditional ablation of PU.1 de-repressed the pDC transcriptional signature in cDCs. The combination of genome-wide mapping of PU.1 binding and gene expression analysis revealed a key role for PU.1 in maintaining cDC identity through the induction of the transcriptional regulator DC-SCRIPT. PU.1 activated DC-SCRIPT expression, which in turn promoted cDC formation, particularly of cDC1s, and repressed pDC development. Thus, cDC identity is regulated by a transcriptional node requiring PU.1 and DC-SCRIPT.


Human lymphoma mutations reveal CARD11 as the switch between self-antigen-induced B cell death or proliferation and autoantibody production.

  • Yogesh S Jeelall‎ et al.
  • The Journal of experimental medicine‎
  • 2012‎

Self-tolerance and immunity are actively acquired in parallel through a poorly understood ability of antigen receptors to switch between signaling death or proliferation of antigen-binding lymphocytes in different contexts. It is not known whether this tolerance-immunity switch requires global rewiring of the signaling apparatus or if it can arise from a single molecular change. By introducing individual CARD11 mutations found in human lymphomas into antigen-activated mature B lymphocytes in mice, we find here that lymphoma-derived CARD11 mutations switch the effect of self-antigen from inducing B cell death into T cell-independent proliferation, Blimp1-mediated plasmablast differentiation, and autoantibody secretion. Our findings demonstrate that regulation of CARD11 signaling is a critical switch governing the decision between death and proliferation in antigen-stimulated mature B cells and that mutations in this switch represent a powerful initiator for aberrant B cell responses in vivo.


Pax5 loss imposes a reversible differentiation block in B-progenitor acute lymphoblastic leukemia.

  • Grace J Liu‎ et al.
  • Genes & development‎
  • 2014‎

Loss-of-function mutations in hematopoietic transcription factors including PAX5 occur in most cases of B-progenitor acute lymphoblastic leukemia (B-ALL), a disease characterized by the accumulation of undifferentiated lymphoblasts. Although PAX5 mutation is a critical driver of B-ALL development in mice and humans, it remains unclear how its loss contributes to leukemogenesis and whether ongoing PAX5 deficiency is required for B-ALL maintenance. Here we used transgenic RNAi to reversibly suppress endogenous Pax5 expression in the hematopoietic compartment of mice, which cooperates with activated signal transducer and activator of transcription 5 (STAT5) to induce B-ALL. In this model, restoring endogenous Pax5 expression in established B-ALL triggers immunophenotypic maturation and durable disease remission by engaging a transcriptional program reminiscent of normal B-cell differentiation. Notably, even brief Pax5 restoration in B-ALL cells causes rapid cell cycle exit and disables their leukemia-initiating capacity. These and similar findings in human B-ALL cell lines establish that Pax5 hypomorphism promotes B-ALL self-renewal by impairing a differentiation program that can be re-engaged despite the presence of additional oncogenic lesions. Our results establish a causal relationship between the hallmark genetic and phenotypic features of B-ALL and suggest that engaging the latent differentiation potential of B-ALL cells may provide new therapeutic entry points.


IL-21 regulates germinal center B cell differentiation and proliferation through a B cell-intrinsic mechanism.

  • Dimitra Zotos‎ et al.
  • The Journal of experimental medicine‎
  • 2010‎

Germinal centers (GCs) are sites of B cell proliferation, somatic hypermutation, and selection of variants with improved affinity for antigen. Long-lived memory B cells and plasma cells are also generated in GCs, although how B cell differentiation in GCs is regulated is unclear. IL-21, secreted by T follicular helper cells, is important for adaptive immune responses, although there are conflicting reports on its target cells and mode of action in vivo. We show that the absence of IL-21 signaling profoundly affects the B cell response to protein antigen, reducing splenic and bone marrow plasma cell formation and GC persistence and function, influencing their proliferation, transition into memory B cells, and affinity maturation. Using bone marrow chimeras, we show that these activities are primarily a result of CD3-expressing cells producing IL-21 that acts directly on B cells. Molecularly, IL-21 maintains expression of Bcl-6 in GC B cells. The absence of IL-21 or IL-21 receptor does not abrogate the appearance of T cells in GCs or the appearance of CD4 T cells with a follicular helper phenotype. IL-21 thus controls fate choices of GC B cells directly.


Effector Regulatory T Cell Differentiation and Immune Homeostasis Depend on the Transcription Factor Myb.

  • Sheila Dias‎ et al.
  • Immunity‎
  • 2017‎

FoxP3-expressing regulatory T (Treg) cells are essential for maintaining immune homeostasis. Activated Treg cells undergo further differentiation into an effector state that highly expresses genes critical for Treg cell function, although how this process is coordinated on a transcriptional level is poorly understood. Here, we demonstrate that mice lacking the transcription factor Myb in Treg cells succumbed to a multi-organ inflammatory disease. Myb was specifically expressed in, and required for the differentiation of, thymus-derived effector Treg cells. The combination of transcriptome and genomic footprint analyses revealed that Myb directly regulated a large proportion of the gene expression specific to effector Treg cells, identifying Myb as a critical component of the gene regulatory network controlling effector Treg cell differentiation and function.


Opposing Development of Cytotoxic and Follicular Helper CD4 T Cells Controlled by the TCF-1-Bcl6 Nexus.

  • Tiziano Donnarumma‎ et al.
  • Cell reports‎
  • 2016‎

CD4+ T cells develop distinct and often contrasting helper, regulatory, or cytotoxic activities. Typically a property of CD8+ T cells, granzyme-mediated cytotoxic T cell (CTL) potential is also exerted by CD4+ T cells. However, the conditions that induce CD4+ CTLs are not entirely understood. Using single-cell transcriptional profiling, we uncover a unique signature of Granzyme B (GzmB)+ CD4+ CTLs, which distinguishes them from other CD4+ T helper (Th) cells, including Th1 cells, and strongly contrasts with the follicular helper T (Tfh) cell signature. The balance between CD4+ CTL and Tfh differentiation heavily depends on the class of infecting virus and is jointly regulated by the Tfh-related transcription factors Bcl6 and Tcf7 (encoding TCF-1) and by the expression of the inhibitory receptors PD-1 and LAG3. This unique profile of CD4+ CTLs offers targets for their study, and its antagonism by the Tfh program separates CD4+ T cells with either helper or killer functions.


ZC3H12C expression in dendritic cells is necessary to prevent lymphadenopathy of skin-draining lymph nodes.

  • Elise Clayer‎ et al.
  • Immunology and cell biology‎
  • 2022‎

The role of RNA-binding proteins of the CCCH-containing family in regulating proinflammatory cytokine production and inflammation is increasingly recognized. We have identified ZC3H12C (Regnase-3) as a potential post-transcriptional regulator of tumor necrosis factor expression and have investigated its role in vivo by generating Zc3h12c-deficient mice that express green fluorescent protein instead of ZC3H12C. Zc3h12c-deficient mice develop hypertrophic lymph nodes. In the immune system, ZC3H12C expression is mostly restricted to the dendritic cell (DC) populations, and we show that DC-restricted ZC3H12C depletion is sufficient to cause lymphadenopathy. ZC3H12C can regulate Tnf messenger RNA stability via its RNase activity in vitro, and we confirmed the role of Tnf in the development of lymphadenopathy. Finally, we found that loss of ZC3H12C did not impact the outcome of skin inflammation in the imiquimod-induced murine model of psoriasis, despite Zc3h12c being identified as a risk factor for psoriasis susceptibility in several genome-wide association studies. Our data suggest a role for ZC3H12C in DC-driven skin homeostasis.


Langerhans cells are an essential cellular intermediary in chronic dermatitis.

  • Holly Anderton‎ et al.
  • Cell reports‎
  • 2022‎

SHARPIN regulates signaling from the tumor necrosis factor (TNF) superfamily and pattern-recognition receptors. An inactivating Sharpin mutation in mice causes TNF-mediated dermatitis. Blocking cell death prevents the phenotype, implicating TNFR1-induced cell death in causing the skin disease. However, the source of TNF that drives dermatitis is unknown. Immune cells are a potent source of TNF in vivo and feature prominently in the skin pathology; however, T cells, B cells, and eosinophils are dispensable for the skin phenotype. We use targeted in vivo cell ablation, immune profiling, and extensive imaging to identify immune populations driving dermatitis. We find that systemic depletion of Langerin+ cells significantly reduces disease severity. This is enhanced in mice that lack Langerhans cells (LCs) from soon after birth. Reconstitution of LC-depleted Sharpin mutant mice with TNF-deficient LCs prevents dermatitis, implicating LCs as a potential cellular source of pathogenic TNF and highlighting a T cell-independent role in driving skin inflammation.


Blockade of the co-inhibitory molecule PD-1 unleashes ILC2-dependent antitumor immunity in melanoma.

  • Nicolas Jacquelot‎ et al.
  • Nature immunology‎
  • 2021‎

Group 2 innate lymphoid cells (ILC2s) are essential to maintain tissue homeostasis. In cancer, ILC2s can harbor both pro-tumorigenic and anti-tumorigenic functions, but we know little about their underlying mechanisms or whether they could be clinically relevant or targeted to improve patient outcomes. Here, we found that high ILC2 infiltration in human melanoma was associated with a good clinical prognosis. ILC2s are critical producers of the cytokine granulocyte-macrophage colony-stimulating factor, which coordinates the recruitment and activation of eosinophils to enhance antitumor responses. Tumor-infiltrating ILC2s expressed programmed cell death protein-1, which limited their intratumoral accumulation, proliferation and antitumor effector functions. This inhibition could be overcome in vivo by combining interleukin-33-driven ILC2 activation with programmed cell death protein-1 blockade to significantly increase antitumor responses. Together, our results identified ILC2s as a critical immune cell type involved in melanoma immunity and revealed a potential synergistic approach to harness ILC2 function for antitumor immunotherapies.


NAb-seq: an accurate, rapid, and cost-effective method for antibody long-read sequencing in hybridoma cell lines and single B cells.

  • Hema Preethi Subas Satish‎ et al.
  • mAbs‎
  • 2022‎

Despite their common use in research, monoclonal antibodies are currently not systematically sequenced. This can lead to issues with reproducibility and the occasional loss of antibodies with loss of cell lines. Hybridoma cell lines have been the primary means of generating monoclonal antibodies from immunized animals, including mice, rats, rabbits, and alpacas. Excluding therapeutic antibodies, few hybridoma-derived antibody sequences are known. Sanger sequencing has been "the gold standard" for antibody gene sequencing, but this method relies on the availability of species-specific degenerate primer sets for amplification of light and heavy antibody genes and it requires lengthy and expensive cDNA preparation. Here, we leveraged recent improvements in long-read Oxford Nanopore Technologies (ONT) sequencing to develop Nanopore Antibody sequencing (NAb-seq): a three-day, species-independent, and cost-effective workflow to characterize paired full-length immunoglobulin light- and heavy-chain genes from hybridoma cell lines. When compared to Sanger sequencing of two hybridoma cell lines, long-read ONT sequencing was highly accurate, reliable, and amenable to high throughput. We further show that the method is applicable to single cells, allowing efficient antibody discovery in rare populations such as memory B cells. In summary, NAb-seq promises to accelerate identification and validation of hybridoma antibodies as well as antibodies from single B cells used in research, diagnostics, and therapeutics.


An arrayed CRISPR screen of primary B cells reveals the essential elements of the antibody secretion pathway.

  • Stephanie Trezise‎ et al.
  • Frontiers in immunology‎
  • 2023‎

Humoral immunity depends on the differentiation of B cells into antibody secreting cells (ASCs). Excess or inappropriate ASC differentiation can lead to antibody-mediated autoimmune diseases, while impaired differentiation results in immunodeficiency.


Mitochondrial function provides instructive signals for activation-induced B-cell fates.

  • Kyoung-Jin Jang‎ et al.
  • Nature communications‎
  • 2015‎

During immune reactions, functionally distinct B-cell subsets are generated by stochastic processes, including class-switch recombination (CSR) and plasma cell differentiation (PCD). In this study, we show a strong association between individual B-cell fates and mitochondrial functions. CSR occurs specifically in activated B cells with increased mitochondrial mass and membrane potential, which augment mitochondrial reactive oxygen species (mROS), whereas PCD occurs in cells with decreased mitochondrial mass and potential. These events are consequences of initial slight changes in mROS in mitochondria(high) B-cell populations. In CSR-committed cells, mROS attenuates haeme synthesis by inhibiting ferrous ion addition to protoporphyrin IX, thereby maintaining Bach2 function. Reduced mROS then promotes PCD by increasing haeme synthesis. In PCD-committed cells, Blimp1 reduces mitochondrial mass, thereby reducing mROS levels. Identifying mROS as a haeme synthesis regulator increases the understanding of mechanisms regulating haeme homeostasis and cell fate determination after B-cell activation.


The transcriptional regulators IRF4, BATF and IL-33 orchestrate development and maintenance of adipose tissue-resident regulatory T cells.

  • Ajithkumar Vasanthakumar‎ et al.
  • Nature immunology‎
  • 2015‎

Foxp3(+) regulatory T (Treg) cells in visceral adipose tissue (VAT-Treg cells) are functionally specialized tissue-resident cells that prevent obesity-associated inflammation and preserve insulin sensitivity and glucose tolerance. Their development depends on the transcription factor PPAR-γ; however, the environmental cues required for their differentiation are unknown. Here we show that interleukin 33 (IL-33) signaling through the IL-33 receptor ST2 and myeloid differentiation factor MyD88 is essential for development and maintenance of VAT-Treg cells and sustains their transcriptional signature. Furthermore, the transcriptional regulators BATF and IRF4 were necessary for VAT-Treg differentiation through direct regulation of ST2 and PPAR-γ expression. IL-33 administration induced vigorous population expansion of VAT-Treg cells, which tightly correlated with improvements in metabolic parameters in obese mice. Human omental adipose tissue Treg cells also showed high ST2 expression, suggesting an evolutionarily conserved requirement for IL-33 in VAT-Treg cell homeostasis.


The closely related CD103+ dendritic cells (DCs) and lymphoid-resident CD8+ DCs differ in their inflammatory functions.

  • Zhijun Jiao‎ et al.
  • PloS one‎
  • 2014‎

Migratory CD103+ and lymphoid-resident CD8+ dendritic cells (DCs) share many attributes, such as dependence on the same transcription factors, cross-presenting ability and expression of certain surface molecules, such that it has been proposed they belong to a common sub-lineage. The functional diversity of the two DC types is nevertheless incompletely understood. Here we reveal that upon skin infection with herpes simplex virus, migratory CD103+ DCs from draining lymph nodes were more potent at inducing Th17 cytokine production by CD4+ T cells than CD8+ DCs. This superior capacity to drive Th17 responses was also evident in CD103+ DCs from uninfected mice. Their differential potency to induce Th17 differentiation was reflected by higher production of IL-1β and IL-6 by CD103+ DCs compared with CD8+ DCs upon stimulation. The two types of DCs from isolated lymph nodes also differ in expression of certain pattern recognition receptors. Furthermore, elevated levels of GM-CSF, typical of those found in inflammation, substantially increased the pool size of CD103+ DCs in lymph nodes and skin. We argue that varied levels of GM-CSF may explain the contrasting reports regarding the positive role of GM-CSF in regulating development of CD103+ DCs. Together, we find that these two developmentally closely-related DC subsets display functional differences and that GM-CSF has differential effect on the two types of DCs.


Peripheral natural killer cell maturation depends on the transcription factor Aiolos.

  • Melissa L Holmes‎ et al.
  • The EMBO journal‎
  • 2014‎

Natural killer (NK) cells are an innate lymphoid cell lineage characterized by their capacity to provide rapid effector functions, including cytokine production and cytotoxicity. Here, we identify the Ikaros family member, Aiolos, as a regulator of NK-cell maturation. Aiolos expression is initiated at the point of lineage commitment and maintained throughout NK-cell ontogeny. Analysis of cell surface markers representative of distinct stages of peripheral NK-cell maturation revealed that Aiolos was required for the maturation in the spleen of CD11b(high)CD27(-) NK cells. The differentiation block was intrinsic to the NK-cell lineage and resembled that found in mice lacking either T-bet or Blimp1; however, genetic analysis revealed that Aiolos acted independently of all other known regulators of NK-cell differentiation. NK cells lacking Aiolos were strongly hyper-reactive to a variety of NK-cell-mediated tumor models, yet impaired in controlling viral infection, suggesting a regulatory function for CD27(-) NK cells in balancing these two arms of the immune response. These data place Aiolos in the emerging gene regulatory network controlling NK-cell maturation and function.


Blimp-1-Dependent IL-10 Production by Tr1 Cells Regulates TNF-Mediated Tissue Pathology.

  • Marcela Montes de Oca‎ et al.
  • PLoS pathogens‎
  • 2016‎

Tumor necrosis factor (TNF) is critical for controlling many intracellular infections, but can also contribute to inflammation. It can promote the destruction of important cell populations and trigger dramatic tissue remodeling following establishment of chronic disease. Therefore, a better understanding of TNF regulation is needed to allow pathogen control without causing or exacerbating disease. IL-10 is an important regulatory cytokine with broad activities, including the suppression of inflammation. IL-10 is produced by different immune cells; however, its regulation and function appears to be cell-specific and context-dependent. Recently, IL-10 produced by Th1 (Tr1) cells was shown to protect host tissues from inflammation induced following infection. Here, we identify a novel pathway of TNF regulation by IL-10 from Tr1 cells during parasitic infection. We report elevated Blimp-1 mRNA levels in CD4+ T cells from visceral leishmaniasis (VL) patients, and demonstrate IL-12 was essential for Blimp-1 expression and Tr1 cell development in experimental VL. Critically, we show Blimp-1-dependent IL-10 production by Tr1 cells prevents tissue damage caused by IFNγ-dependent TNF production. Therefore, we identify Blimp-1-dependent IL-10 produced by Tr1 cells as a key regulator of TNF-mediated pathology and identify Tr1 cells as potential therapeutic tools to control inflammation.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: