Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 3 papers out of 3 papers

Beyond repair foci: DNA double-strand break repair in euchromatic and heterochromatic compartments analyzed by transmission electron microscopy.

  • Yvonne Lorat‎ et al.
  • PloS one‎
  • 2012‎

DNA double-strand breaks (DSBs) generated by ionizing radiation pose a serious threat to the preservation of genetic and epigenetic information. The known importance of local chromatin configuration in DSB repair raises the question of whether breaks in different chromatin environments are recognized and repaired by the same repair machinery and with similar efficiency. An essential step in DSB processing by non-homologous end joining is the high-affinity binding of Ku70-Ku80 and DNA-PKcs to double-stranded DNA ends that holds the ends in physical proximity for subsequent repair.


Accumulation of DNA damage in complex normal tissues after protracted low-dose radiation.

  • Stefanie Schanz‎ et al.
  • DNA repair‎
  • 2012‎

The biological consequences of low levels of radiation exposure and their effects on human health are unclear. Ionizing radiation induces a variety of lesions of which DNA double-strand breaks (DSBs) are the most biologically significant, because unrepaired or misrepaired DSBs can lead to genomic instability and cell death. Using repair-proficient mice as an in vivo system we monitored the accumulation of DNA damage in normal tissues exposed to daily low-dose radiation of 100mGy or 10mGy. Radiation-induced foci in differentiated and tissue-specific stem cells were quantified by immunofluorescence microscopy after 2, 4, 6, 8, and 10 weeks of daily low-dose radiation and DNA lesions were characterized using transmission electron microscopy (TEM) combined with immunogold-labeling. In brain, long-living cortical neurons had a significant accumulation of foci with increasing cumulative doses. In intestine and skin, characterized by constant cell renewal of their epithelial lining, differentiated enterocytes and keratinocytes had either unchanged or only slightly increased foci levels during protracted low-dose radiation. Significantly, analysis of epidermal stem cells in skin revealed a constant increase of 53BP1 foci during the first weeks of low-dose radiation even with 10mGy, suggesting substantial accumulations of DSBs. However, TEM analysis suggests that these remaining 53BP1 foci, which are predominantly located in compact heterochromatin, do not co-localize with phosphorylated Ku70 or DNA-PKcs, core components of non-homologous end-joining. The biological relevance of these persistent 53BP1 foci, particularly their contribution to genomic instability by genetic and epigenetic alterations, has to be defined in future studies.


Nanoscale analysis of clustered DNA damage after high-LET irradiation by quantitative electron microscopy--the heavy burden to repair.

  • Yvonne Lorat‎ et al.
  • DNA repair‎
  • 2015‎

Low- and high-linear energy transfer (LET) ionising radiation are effective cancer therapies, but produce structurally different forms of DNA damage. Isolated DNA damage is repaired efficiently; however, clustered lesions may be more difficult to repair, and are considered as significant biological endpoints. We investigated the formation and repair of DNA double-strand breaks (DSBs) and clustered lesions in human fibroblasts after exposure to sparsely (low-LET; delivered by photons) and densely (high-LET; delivered by carbon ions) ionising radiation. DNA repair factors (pKu70, 53BP1, γH2AX, and pXRCC1) were detected using immunogold-labelling and electron microscopy, and spatiotemporal DNA damage patterns were analysed within the nuclear ultrastructure at the nanoscale level. By labelling activated Ku-heterodimers (pKu70) the number of DSBs was determined in electron-lucent euchromatin and electron-dense heterochromatin. Directly after low-LET exposure (5 min post-irradiation), single pKu70 dimers, which reflect isolated DSBs, were randomly distributed throughout the entire nucleus with a linear dose correlation up to 30 Gy. Most euchromatic DSBs were sensed and repaired within 40 min, whereas heterochromatic DSBs were processed with slower kinetics. Essentially all DNA lesions induced by low-LET irradiation were efficiently rejoined within 24h post-irradiation. High-LET irradiation caused localised energy deposition within the particle tracks, and generated highly clustered DNA lesions with multiple DSBs in close proximity. The dimensions of these clustered lesions along the particle trajectories depended on the chromatin packing density, with huge DSB clusters predominantly localised in condensed heterochromatin. High-LET irradiation-induced clearly higher DSB yields than low-LET irradiation, with up to ∼ 500 DSBs per μm(3) track volume, and large fractions of these heterochromatic DSBs remained unrepaired. Hence, the spacing and quantity of DSBs in clustered lesions influence DNA repair efficiency, and may determine the radiobiological outcome.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: