Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 21 papers

Immune dysregulation in patients with PTEN hamartoma tumor syndrome: Analysis of FOXP3 regulatory T cells.

  • Hannah H Chen‎ et al.
  • The Journal of allergy and clinical immunology‎
  • 2017‎

Patients with heterozygous germline mutations in phosphatase and tensin homolog deleted on chromosome 10 (PTEN) experience autoimmunity and lymphoid hyperplasia.


Germline mutations in WNK2 could be associated with serrated polyposis syndrome.

  • Yasmin Soares de Lima‎ et al.
  • Journal of medical genetics‎
  • 2023‎

Patients with serrated polyposis syndrome (SPS) have multiple and/or large serrated colonic polyps and higher risk for colorectal cancer. SPS inherited genetic basis is mostly unknown. We aimed to identify new germline predisposition factors for SPS by functionally evaluating a candidate gene and replicating it in additional SPS cohorts.


mTOR inhibitors reduce enteropathy, intestinal bleeding and colectomy rate in patients with juvenile polyposis of infancy with PTEN-BMPR1A deletion.

  • Henry Taylor‎ et al.
  • Human molecular genetics‎
  • 2021‎

Ultra-rare genetic disorders can provide proof of concept for efficacy of targeted therapeutics and reveal pathogenic mechanisms relevant to more common conditions. Juvenile polyposis of infancy (JPI) is caused by microdeletions in chromosome 10 that result in haploinsufficiency of two tumor suppressor genes: phosphatase and tensin homolog deleted on chromosome 10 (PTEN) and bone morphogenetic protein receptor type IA (BMPR1A). Loss of PTEN and BMPR1A results in a much more severe phenotype than deletion of either gene alone, with infantile onset pan-enteric polyposis and a high mortality rate. No effective pharmacological therapy exists. A multi-center cohort analysis was performed to characterize phenotype and investigate the therapeutic effect of mammalian target of rapamycin (mTOR) inhibition (adverse events, disease progression, time to colectomy and mortality) in patients with JPI. Among 25 JPI patients identified (mean age of onset 13 months), seven received mTOR inhibitors (everolimus, n = 2; or sirolimus, n = 5). Treatment with an mTOR inhibitor reduced the risk of colectomy (hazard ratio = 0.27, 95% confidence interval = 0.07-0.954, P = 0.042) and resulted in significant improvements in the serum albumin level (mean increase = 16.3 g/l, P = 0.0003) and hemoglobin (mean increase = 2.68 g/dl, P = 0.0077). Long-term mTOR inhibitor treatment was well tolerated over an accumulated follow-up time of 29.8 patient years. No serious adverse events were reported. Early therapy with mTOR inhibitors offers effective, pathway-specific and personalized treatment for patients with JPI. Inhibition of the phosphoinositol-3-kinase-AKT-mTOR pathway mitigates the detrimental synergistic effects of combined PTEN-BMPR1A deletion. This is the first effective pharmacological treatment identified for a hamartomatous polyposis syndrome.


MTHFR C677T and A1298C polymorphism's effect on risk of colorectal cancer in Lynch syndrome.

  • Mariann Unhjem Wiik‎ et al.
  • Scientific reports‎
  • 2023‎

Lynch syndrome (LS) is characterised by an increased risk of developing colorectal cancer (CRC) and other extracolonic epithelial cancers. It is caused by pathogenic germline variants in DNA mismatch repair (MMR) genes or the EPCAM gene, leading to a less functional DNA MMR system. Individuals diagnosed with LS (LS individuals) have a 10-80% lifetime risk of developing cancer. However, there is considerable variability in the age of cancer onset, which cannot be attributed to the specific MMR gene or variant alone. It is speculated that multiple genetic and environmental factors contribute to this variability, including two single nucleotide polymorphisms (SNPs) in the methylenetetrahydrofolate reductase (MTHFR) gene: C677T (rs1801133) and A1298C (rs1801131). By decreasing MTHFR activity, these SNPs theoretically reduce the silencing of DNA repair genes and increase the availability of nucleotides for DNA synthesis and repair, thereby protecting against early-onset cancer in LS. We investigated the effect of these SNPs on LS disease expression in 2,723 LS individuals from Australia, Poland, Germany, Norway and Spain. The association between age at cancer onset and SNP genotype (risk of cancer) was estimated using Cox regression adjusted for gender, country and affected MMR gene. For A1298C (rs1801131), both the AC and CC genotypes were significantly associated with a reduced risk of developing CRC compared to the AA genotype, but no association was seen for C677T (rs1801133). However, an aggregated effect of protective alleles was seen when combining the alleles from the two SNPs, especially for LS individuals carrying 1 and 2 alleles. For individuals with germline pathogenic variants in MLH1, the CC genotype of A1298C was estimated to reduce the risk of CRC significantly by 39% (HR = 0.61, 95% CI 0.42, 0.89, p = 0.011), while for individuals with pathogenic germline MSH2 variants, the AC genotype (compared to AA) was estimated to reduce the risk of CRC by 26% (HR = 0.66, 95% CI 0.53, 0.83, p = 0.01). In comparison, no association was observed for C677T (rs1801133). In conclusion, our study suggests that combining the MMR gene information with the MTHFR genotype, including the aggregated effect of protective alleles, could be useful in developing an algorithm that estimates the risk of CRC in LS individuals.


A sensitive and scalable microsatellite instability assay to diagnose constitutional mismatch repair deficiency by sequencing of peripheral blood leukocytes.

  • Richard Gallon‎ et al.
  • Human mutation‎
  • 2019‎

Constitutional mismatch repair deficiency (CMMRD) is caused by germline pathogenic variants in both alleles of a mismatch repair gene. Patients have an exceptionally high risk of numerous pediatric malignancies and benefit from surveillance and adjusted treatment. The diversity of its manifestation, and ambiguous genotyping results, particularly from PMS2, can complicate diagnosis and preclude timely patient management. Assessment of low-level microsatellite instability in nonneoplastic tissues can detect CMMRD, but current techniques are laborious or of limited sensitivity. Here, we present a simple, scalable CMMRD diagnostic assay. It uses sequencing and molecular barcodes to detect low-frequency microsatellite variants in peripheral blood leukocytes and classifies samples using variant frequencies. We tested 30 samples from 26 genetically-confirmed CMMRD patients, and samples from 94 controls and 40 Lynch syndrome patients. All samples were correctly classified, except one from a CMMRD patient recovering from aplasia. However, additional samples from this same patient tested positive for CMMRD. The assay also confirmed CMMRD in six suspected patients. The assay is suitable for both rapid CMMRD diagnosis within clinical decision windows and scalable screening of at-risk populations. Its deployment will improve patient care, and better define the prevalence and phenotype of this likely underreported cancer syndrome.


Mutational Signature Analysis Reveals NTHL1 Deficiency to Cause a Multi-tumor Phenotype.

  • Judith E Grolleman‎ et al.
  • Cancer cell‎
  • 2019‎

Biallelic germline mutations affecting NTHL1 predispose carriers to adenomatous polyposis and colorectal cancer, but the complete phenotype is unknown. We describe 29 individuals carrying biallelic germline NTHL1 mutations from 17 families, of which 26 developed one (n = 10) or multiple (n = 16) malignancies in 14 different tissues. An unexpected high breast cancer incidence was observed in female carriers (60%). Mutational signature analysis of 14 tumors from 7 organs revealed that NTHL1 deficiency underlies the main mutational process in all but one of the tumors (93%). These results reveal NTHL1 as a multi-tumor predisposition gene with a high lifetime risk for extracolonic cancers and a typical mutational signature observed across tumor types, which can assist in the recognition of this syndrome.


Pathogenic SPTBN1 variants cause an autosomal dominant neurodevelopmental syndrome.

  • Margot A Cousin‎ et al.
  • Nature genetics‎
  • 2021‎

SPTBN1 encodes βII-spectrin, the ubiquitously expressed β-spectrin that forms micrometer-scale networks associated with plasma membranes. Mice deficient in neuronal βII-spectrin have defects in cortical organization, developmental delay and behavioral deficiencies. These phenotypes, while less severe, are observed in haploinsufficient animals, suggesting that individuals carrying heterozygous SPTBN1 variants may also show measurable compromise of neural development and function. Here we identify heterozygous SPTBN1 variants in 29 individuals with developmental, language and motor delays; mild to severe intellectual disability; autistic features; seizures; behavioral and movement abnormalities; hypotonia; and variable dysmorphic facial features. We show that these SPTBN1 variants lead to effects that affect βII-spectrin stability, disrupt binding to key molecular partners, and disturb cytoskeleton organization and dynamics. Our studies define SPTBN1 variants as the genetic basis of a neurodevelopmental syndrome, expand the set of spectrinopathies affecting the brain and underscore the critical role of βII-spectrin in the central nervous system.


Clinically relevant combined effect of polygenic background, rare pathogenic germline variants, and family history on colorectal cancer incidence.

  • Emadeldin Hassanin‎ et al.
  • BMC medical genomics‎
  • 2023‎

Summarised in polygenic risk scores (PRS), the effect of common, low penetrant genetic variants associated with colorectal cancer (CRC), can be used for risk stratification.


Real-time use of artificial intelligence (CADEYE) in colorectal cancer surveillance of patients with Lynch syndrome-A randomized controlled pilot trial (CADLY).

  • Robert Hüneburg‎ et al.
  • United European gastroenterology journal‎
  • 2023‎

Lynch syndrome (LS), an autosomal dominant disorder caused by pathogenic germline variants in DNA mismatch repair (MMR) genes, represents the most common hereditary colorectal cancer (CRC) syndrome. Lynch syndrome patients are at high risk of CRC despite regular endoscopic surveillance.


Diagnostic yield and clinical utility of a comprehensive gene panel for hereditary tumor syndromes.

  • Jonas Henn‎ et al.
  • Hereditary cancer in clinical practice‎
  • 2019‎

In a considerable number of patients with a suspected hereditary tumor syndrome (HTS), no underlying germline mutation is detected in the most likely affected genes. The present study aimed to establish and validate a large gene panel for HTS, and determine its diagnostic yield and clinical utility.


Cancer risks in Lynch syndrome, Lynch-like syndrome, and familial colorectal cancer type X: a prospective cohort study.

  • Karolin Bucksch‎ et al.
  • BMC cancer‎
  • 2020‎

Individuals with pathogenic germline variants in DNA mismatch repair (MMR) genes are at increased risk of developing colorectal, endometrial and other cancers (Lynch syndrome, LS). While previous studies have extensively described cancer risks in LS, cancer risks in individuals from families without detectable MMR gene defects despite MMR deficiency (Lynch-like syndrome, LLS), and in individuals from families fulfilling the Amsterdam-II criteria without any signs of MMR deficiency (familial colorectal cancer type X, FCCX) are less well studied. The aim of this prospective study was to characterise the risk for different cancer types in LS, LLS, and FCCX, and to compare these with the cancer risks in the general population.


Genetic alterations of TP53 and OTX2 indicate increased risk of relapse in WNT medulloblastomas.

  • Tobias Goschzik‎ et al.
  • Acta neuropathologica‎
  • 2022‎

This study aimed to re-evaluate the prognostic impact of TP53 mutations and to identify specific chromosomal aberrations as possible prognostic markers in WNT-activated medulloblastoma (WNT-MB). In a cohort of 191 patients with WNT-MBs, mutations in CTNNB1, APC, and TP53 were analyzed by DNA sequencing. Chromosomal copy-number aberrations were assessed by molecular inversion probe technology (MIP), SNP6, or 850k methylation array hybridization. Prognostic impact was evaluated in 120 patients with follow-up data from the HIT2000 medulloblastoma trial or HIT registries. CTNNB1 mutations were present in 92.2%, and APC mutations in 6.8% of samples. One CTNNB1 wild-type tumor gained WNT activation due to homozygous FBXW7 deletion. Monosomy 6 was present in 78.6%, and more frequent in children than adults. 16.1% of tumor samples showed TP53 mutations, of those 60% with nuclear positivity for the p53 protein. Loss of heterozygosity at the TP53 locus (chromosome 17p13.1) was found in 40.7% (11/27) of TP53 mutant tumor samples and in 12.6% of TP53 wild-type cases (13/103). Patients with tumors harboring TP53 mutations showed significant worse progression-free survival (PFS; 5-year-PFS 68% versus 93%, p = 0.001), and were enriched for chromosomes 17p (p = 0.001), 10, and 13 losses. Gains of OTX2 (14q22.3) occurred in 38.9% of samples and were associated with poor PFS and OS (5-year-PFS 72% versus 93%, p = 0.017 resp. 5-year-OS 83% versus 97%, p = 0.006). Multivariable Cox regression analysis for PFS/OS identified both genetic alterations as independent prognostic markers. Our data suggest that patients with WNT-MB carrying TP53 mutations or OTX2 gains (58.1%) are at higher risk of relapse. Eligibility of these patients for therapy de-escalation trials needs to be debated.


Rare germline variants in the E-cadherin gene CDH1 are associated with the risk of brain tumors of neuroepithelial and epithelial origin.

  • Alisa Förster‎ et al.
  • Acta neuropathologica‎
  • 2021‎

The genetic basis of brain tumor development is poorly understood. Here, leukocyte DNA of 21 patients from 15 families with ≥ 2 glioma cases each was analyzed by whole-genome or targeted sequencing. As a result, we identified two families with rare germline variants, p.(A592T) or p.(A817V), in the E-cadherin gene CDH1 that co-segregate with the tumor phenotype, consisting primarily of oligodendrogliomas, WHO grade II/III, IDH-mutant, 1p/19q-codeleted (ODs). Rare CDH1 variants, previously shown to predispose to gastric and breast cancer, were significantly overrepresented in these glioma families (13.3%) versus controls (1.7%). In 68 individuals from 28 gastric cancer families with pathogenic CDH1 germline variants, brain tumors, including a pituitary adenoma, were observed in three cases (4.4%), a significantly higher prevalence than in the general population (0.2%). Furthermore, rare CDH1 variants were identified in tumor DNA of 6/99 (6%) ODs. CDH1 expression was detected in undifferentiated and differentiating oligodendroglial cells isolated from rat brain. Functional studies using CRISPR/Cas9-mediated knock-in or stably transfected cell models demonstrated that the identified CDH1 germline variants affect cell membrane expression, cell migration and aggregation. E-cadherin ectodomain containing variant p.(A592T) had an increased intramolecular flexibility in a molecular dynamics simulation model. E-cadherin harboring intracellular variant p.(A817V) showed reduced β-catenin binding resulting in increased cytosolic and nuclear β-catenin levels reverted by treatment with the MAPK interacting serine/threonine kinase 1 inhibitor CGP 57380. Our data provide evidence for a role of deactivating CDH1 variants in the risk and tumorigenesis of neuroepithelial and epithelial brain tumors, particularly ODs, possibly via WNT/β-catenin signaling.


Exome Sequencing Identifies Biallelic MSH3 Germline Mutations as a Recessive Subtype of Colorectal Adenomatous Polyposis.

  • Ronja Adam‎ et al.
  • American journal of human genetics‎
  • 2016‎

In ∼30% of families affected by colorectal adenomatous polyposis, no germline mutations have been identified in the previously implicated genes APC, MUTYH, POLE, POLD1, and NTHL1, although a hereditary etiology is likely. To uncover further genes with high-penetrance causative mutations, we performed exome sequencing of leukocyte DNA from 102 unrelated individuals with unexplained adenomatous polyposis. We identified two unrelated individuals with differing compound-heterozygous loss-of-function (LoF) germline mutations in the mismatch-repair gene MSH3. The impact of the MSH3 mutations (c.1148delA, c.2319-1G>A, c.2760delC, and c.3001-2A>C) was indicated at the RNA and protein levels. Analysis of the diseased individuals' tumor tissue demonstrated high microsatellite instability of di- and tetranucleotides (EMAST), and immunohistochemical staining illustrated a complete loss of nuclear MSH3 in normal and tumor tissue, confirming the LoF effect and causal relevance of the mutations. The pedigrees, genotypes, and frequency of MSH3 mutations in the general population are consistent with an autosomal-recessive mode of inheritance. Both index persons have an affected sibling carrying the same mutations. The tumor spectrum in these four persons comprised colorectal and duodenal adenomas, colorectal cancer, gastric cancer, and an early-onset astrocytoma. Additionally, we detected one unrelated individual with biallelic PMS2 germline mutations, representing constitutional mismatch-repair deficiency. Potentially causative variants in 14 more candidate genes identified in 26 other individuals require further workup. In the present study, we identified biallelic germline MSH3 mutations in individuals with a suspected hereditary tumor syndrome. Our data suggest that MSH3 mutations represent an additional recessive subtype of colorectal adenomatous polyposis.


Exome sequencing characterizes the somatic mutation spectrum of early serrated lesions in a patient with serrated polyposis syndrome (SPS).

  • Sukanya Horpaopan‎ et al.
  • Hereditary cancer in clinical practice‎
  • 2017‎

Serrated or Hyperplastic Polyposis Syndrome (SPS, HPS) is a yet poorly defined colorectal cancer (CRC) predisposition characterised by the occurrence of multiple and/or large serrated polyps throughout the colon. A serrated polyp-CRC sequence (serrated pathway) of CRC formation has been postulated, however, to date only few molecular signatures of serrated neoplasia (BRAF, KRAS, RNF43 mutations, CpG Island Methylation, MSI) have been described in a subset of SPS patients and neither the etiology of the syndrome nor the distinct genetic alterations during tumorigenesis have been identified.


Effects of common haplotypes of the ileal sodium dependent bile acid transporter gene on the development of sporadic and familial colorectal cancer: a case control study.

  • Frank Grünhage‎ et al.
  • BMC medical genetics‎
  • 2008‎

The genetics of sporadic and non-syndromic familial colorectal cancer (CRC) is not well defined. However, genetic factors that promote the development of precursor lesions, i.e. adenomas, might also predispose to CRC. Recently, an association of colorectal adenoma with two variants (c.507C>T;p.L169L and c.511G>T;p.A171S) of the ileal sodium dependent bile acid transporter gene (SLC10A2) has been reported. Here, we reconstructed haplotypes of the SLC10A2 gene locus and tested for association with non-syndromic familial and sporadic CRC compared to 'hyper-normal' controls who displayed no colorectal polyps on screening colonoscopy.


Disease expression in juvenile polyposis syndrome: a retrospective survey on a cohort of 221 European patients and comparison with a literature-derived cohort of 473 SMAD4/BMPR1A pathogenic variant carriers.

  • Robert Blatter‎ et al.
  • Genetics in medicine : official journal of the American College of Medical Genetics‎
  • 2020‎

Juvenile polyposis syndrome (JPS) is a rare, autosomal-dominantly inherited cancer predisposition caused in approximately 50% of cases by pathogenic germline variants in SMAD4 and BMPR1A. We aimed to gather detailed clinical and molecular genetic information on JPS disease expression to provide a basis for management guidelines and establish open access variant databases.


The Management of Peutz-Jeghers Syndrome: European Hereditary Tumour Group (EHTG) Guideline.

  • Anja Wagner‎ et al.
  • Journal of clinical medicine‎
  • 2021‎

The scientific data to guide the management of Peutz-Jeghers syndrome (PJS) are sparse. The available evidence has been reviewed and discussed by diverse medical specialists in the field of PJS to update the previous guideline from 2010 and formulate a revised practical guideline for colleagues managing PJS patients. Methods: Literature searches were performed using MEDLINE, Embase, and Cochrane. Evidence levels and recommendation strengths were assessed using the Grading of Recommendations Assessment, Development and Evaluation (GRADE). A Delphi process was followed, with consensus being reached when ≥80% of the voting guideline committee members agreed. Recommendations and statements: The only recent guidelines available were for gastrointestinal and pancreatic management. These were reviewed and endorsed after confirming that no more recent relevant papers had been published. Literature searches were performed for additional questions and yielded a variable number of relevant papers depending on the subject addressed. Additional recommendations and statements were formulated. Conclusions: A decade on, the evidence base for recommendations remains poor, and collaborative studies are required to provide better data about this rare condition. Within these restrictions, multisystem, clinical management recommendations for PJS have been formulated.


Overview of the Clinical Features of Li-Fraumeni Syndrome and the Current European ERN GENTURIS Guideline.

  • Christian Peter Kratz‎ et al.
  • Geburtshilfe und Frauenheilkunde‎
  • 2022‎

Patients with a tumour-risk syndrome have a significantly increased risk of developing cancer during their lifetime. A positive family history of tumour disease or an unusually early age of onset may be indicative of a tumour risk syndrome. With the diagnosis of a tumour risk syndrome it is possible to recommend a risk-adapted tumour surveillance programme for the patient and (asymptomatic) family members at risk. This facilitates early detection of possible tumours and thus often prevents advanced tumour stages. Li-Fraumeni syndrome is associated with a significantly increased risk of sarcoma and breast cancer in particular, but it is often not diagnosed clinically in those affected. This article reviews the clinical picture, genetic cause and special aspects in the diagnosis and care of patients with Li-Fraumeni syndrome. The initiative resulted from the European reference network GENTURIS, which has set itself the task of improving the identification and care of patients with tumour risk syndromes. A first step is the recent publication of a European guideline for Li-Fraumeni syndrome, which is summarised here and discussed in the context of existing recommendations.


Hereditary Diffuse Gastric Cancer: A Comparative Cohort Study According to Pathogenic Variant Status.

  • Tim Marwitz‎ et al.
  • Cancers‎
  • 2020‎

Hereditary diffuse gastric cancer (HDGC) is an inherited cancer susceptibility syndrome characterized by an elevated risk for diffuse gastric cancer (DGC) and lobular breast cancer (LBC). Some patients fulfilling the clinical testing criteria harbor a pathogenic CDH1 or CTNNA1 germline variant. However, the underlying mechanism for around 80% of the patients with a family or personal history of DGC and LBC has so far not been elucidated. In this cohort study, patients meeting the 2015 HDGC clinical testing criteria were included, and subsequently, CDH1 sequencing was performed. Of the 207 patients (161 families) in this study, we detected 21 pathogenic or likely pathogenic CDH1 variants (PV) in 60 patients (28 families) and one CTNNA1 PV in two patients from one family. Sixty-eight percent (n = 141) of patients were female. The overall PV detection rate was 18% (29/161 families). Criterion 1 and 3 of the 2015 HDGC testing criteria yielded the highest detection rate of CDH1/CTNNA1 PVs (21% and 28%). PV carriers and patients without proven PV were compared. Risk of gastric cancer (GC) (38/62 61% vs. 102/140 73%) and age at diagnosis (40 ± 13 years vs. 44 ± 12 years) were similar between the two groups. However, GC was more advanced in gastrectomy specimens of patients without PV (81% vs. 26%). LBC prevalence in female carriers of a PV was 20% (n = 8/40). Clinical phenotypes differed strongly between families with the same PV. Emphasis should be on detecting more causative genes predisposing for HDGC and improve the management of patients without a proven pathogenic germline variant.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: