Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 8 papers out of 8 papers

Desirable plant cell wall traits for higher-quality miscanthus lignocellulosic biomass.

  • Ricardo M F da Costa‎ et al.
  • Biotechnology for biofuels‎
  • 2019‎

Lignocellulosic biomass from dedicated energy crops such as Miscanthus spp. is an important tool to combat anthropogenic climate change. However, we still do not exactly understand the sources of cell wall recalcitrance to deconstruction, which hinders the efficient biorefining of plant biomass into biofuels and bioproducts.


Activation of lignocellulosic biomass for higher sugar yields using aqueous ionic liquid at low severity process conditions.

  • Ramakrishnan Parthasarathi‎ et al.
  • Biotechnology for biofuels‎
  • 2016‎

Concerns around greenhouse gas emissions necessitate the development of sustainable processes for the production of chemicals, materials, and fuels from alternative renewable sources. The lignocellulosic plant cell walls are one of the most abundant sources of carbon for renewable bioenergy production. Certain ionic liquids (ILs) are very effective at disrupting the plant cell walls of lignocellulose, and generate a substrate that is effectively hydrolyzed into fermentable sugars. Conventional ILs are relatively expensive in terms of purchase price, and the most effective imidazolium-based ILs also require energy intensive processing conditions (>140 °C, 3 h) to release >90 % fermentable sugar yields after saccharification.


Deletion of a gene cluster encoding pectin degrading enzymes in Caldicellulosiruptor bescii reveals an important role for pectin in plant biomass recalcitrance.

  • Daehwan Chung‎ et al.
  • Biotechnology for biofuels‎
  • 2014‎

A major obstacle, and perhaps the most important economic barrier to the effective use of plant biomass for the production of fuels, chemicals, and bioproducts, is our current lack of knowledge of how to efficiently and effectively deconstruct wall polymers for their subsequent use as feedstocks. Plants represent the most desired source of renewable energy and hydrocarbons because they fix CO2, making their use carbon neutral. Their biomass structure, however, is a barrier to deconstruction, and this is often referred to as recalcitrance. Members of the bacterial genus Caldicellulosiruptor have the ability to grow on unpretreated plant biomass and thus provide an assay for plant deconstruction and biomass recalcitrance.


Working towards recalcitrance mechanisms: increased xylan and homogalacturonan production by overexpression of GAlactUronosylTransferase12 (GAUT12) causes increased recalcitrance and decreased growth in Populus.

  • Ajaya K Biswal‎ et al.
  • Biotechnology for biofuels‎
  • 2018‎

The development of fast-growing hardwood trees as a source of lignocellulosic biomass for biofuel and biomaterial production requires a thorough understanding of the plant cell wall structure and function that underlie the inherent recalcitrance properties of woody biomass. Downregulation of GAUT12.1 in Populus deltoides was recently reported to result in improved biomass saccharification, plant growth, and biomass yield. To further understand GAUT12.1 function in biomass recalcitrance and plant growth, here we report the effects of P. trichocarpa GAUT12.1 overexpression in P. deltoides.


Xylan epitope profiling: an enhanced approach to study organ development-dependent changes in xylan structure, biosynthesis, and deposition in plant cell walls.

  • Angelo G Peralta‎ et al.
  • Biotechnology for biofuels‎
  • 2017‎

Xylan is a major hemicellulosic component in the cell walls of higher plants especially in the secondary walls of vascular cells which are playing important roles in physiological processes and overall mechanical strength. Being the second most abundant cell wall polymer after cellulose, xylan is an abundant non-cellulosic carbohydrate constituent of plant biomass. Xylan structures have been demonstrated to contribute to plant biomass recalcitrance during bioenergy applications. A critical understanding of xylan composition, structure, and biosynthesis in developing plant stems will allow an increased understanding of how cell walls are put together in this organ in a basic research, and, in applied research, will improve strategies in xylan engineering to reduce biomass recalcitrance for economically feasible biofuel production.


Downregulation of GAUT12 in Populus deltoides by RNA silencing results in reduced recalcitrance, increased growth and reduced xylan and pectin in a woody biofuel feedstock.

  • Ajaya K Biswal‎ et al.
  • Biotechnology for biofuels‎
  • 2015‎

The inherent recalcitrance of woody bioenergy feedstocks is a major challenge for their use as a source of second-generation biofuel. Secondary cell walls that constitute the majority of hardwood biomass are rich in cellulose, xylan, and lignin. The interactions among these polymers prevent facile accessibility and deconstruction by enzymes and chemicals. Plant biomass that can with minimal pretreatment be degraded into sugars is required to produce renewable biofuels in a cost-effective manner.


Dynamic changes in transcriptome and cell wall composition underlying brassinosteroid-mediated lignification of switchgrass suspension cells.

  • Xiaolan Rao‎ et al.
  • Biotechnology for biofuels‎
  • 2017‎

Plant cell walls contribute the majority of plant biomass that can be used to produce transportation fuels. However, the complexity and variability in composition and structure of cell walls, particularly the presence of lignin, negatively impacts their deconstruction for bioenergy. Metabolic and genetic changes associated with secondary wall development in the biofuel crop switchgrass (Panicum virgatum) have yet to be reported.


Identification of developmental stage and anatomical fraction contributions to cell wall recalcitrance in switchgrass.

  • Jacob D Crowe‎ et al.
  • Biotechnology for biofuels‎
  • 2017‎

Heterogeneity within herbaceous biomass can present important challenges for processing feedstocks to cellulosic biofuels. Alterations to cell wall composition and organization during plant growth represent major contributions to heterogeneity within a single species or cultivar. To address this challenge, the focus of this study was to characterize the relationship between composition and properties of the plant cell wall and cell wall response to deconstruction by NaOH pretreatment and enzymatic hydrolysis for anatomical fractions (stem internodes, leaf sheaths, and leaf blades) within switchgrass at various tissue maturities as assessed by differing internode.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: