Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 20 papers

TCF-1 and LEF-1 act upstream of Th-POK to promote the CD4(+) T cell fate and interact with Runx3 to silence Cd4 in CD8(+) T cells.

  • Farrah C Steinke‎ et al.
  • Nature immunology‎
  • 2014‎

The transcription factors TCF-1 and LEF-1 are essential for early T cell development, but their roles beyond the CD4(+)CD8(+) double-positive (DP) stage are unknown. By specific ablation of these factors in DP thymocytes, we demonstrated that deficiency in TCF-1 and LEF-1 diminished the output of CD4(+) T cells and redirected CD4(+) T cells to a CD8(+) T cell fate. The role of TCF-1 and LEF-1 in the CD4-versus-CD8 lineage 'choice' was mediated in part by direct positive regulation of the transcription factor Th-POK. Furthermore, loss of TCF-1 and LEF-1 unexpectedly caused derepression of CD4 expression in T cells committed to the CD8(+) lineage without affecting the expression of Runx transcription factors. Instead, TCF-1 physically interacted with Runx3 to cooperatively silence Cd4. Thus, TCF-1 and LEF-1 adopted distinct genetic 'wiring' to promote the CD4(+) T cell fate and establish CD8(+) T cell identity.


Tcf1 and Lef1 transcription factors establish CD8(+) T cell identity through intrinsic HDAC activity.

  • Shaojun Xing‎ et al.
  • Nature immunology‎
  • 2016‎

The CD4(+) and CD8(+) T cell dichotomy is essential for effective cellular immunity. How individual T cell identity is established remains poorly understood. Here we show that the high-mobility group (HMG) transcription factors Tcf1 and Lef1 are essential for repressing CD4(+) lineage-associated genes including Cd4, Foxp3 and Rorc in CD8(+) T cells. Tcf1- and Lef1-deficient CD8(+) T cells exhibit histone hyperacetylation, which can be ascribed to intrinsic histone deacetylase (HDAC) activity in Tcf1 and Lef1. Mutation of five conserved amino acids in the Tcf1 HDAC domain diminishes HDAC activity and the ability to suppress CD4(+) lineage genes in CD8(+) T cells. These findings reveal that sequence-specific transcription factors can utilize intrinsic HDAC activity to guard cell identity by repressing lineage-inappropriate genes.


Prostaglandin E1 and Its Analog Misoprostol Inhibit Human CML Stem Cell Self-Renewal via EP4 Receptor Activation and Repression of AP-1.

  • Fengyin Li‎ et al.
  • Cell stem cell‎
  • 2017‎

Effective treatment of chronic myelogenous leukemia (CML) largely depends on the eradication of CML leukemic stem cells (LSCs). We recently showed that CML LSCs depend on Tcf1 and Lef1 factors for self-renewal. Using a connectivity map, we identified prostaglandin E1 (PGE1) as a small molecule that partly elicited the gene expression changes in LSCs caused by Tcf1/Lef1 deficiency. Although it has little impact on normal hematopoiesis, we found that PGE1 treatment impaired the persistence and activity of LSCs in a pre-clinical murine CML model and a xenograft model of transplanted CML patient CD34+ stem/progenitor cells. Mechanistically, PGE1 acted on the EP4 receptor and repressed Fosb and Fos AP-1 factors in a β-catenin-independent manner. Misoprostol, an FDA-approved EP4 agonist, conferred similar protection against CML. These findings suggest that activation of this PGE1-EP4 pathway specifically targets CML LSCs and that the combination of PGE1/misoprostol with conventional tyrosine-kinase inhibitors could provide effective therapy for CML.


The kinase PDK1 is critical for promoting T follicular helper cell differentiation.

  • Zhen Sun‎ et al.
  • eLife‎
  • 2021‎

The kinase PDK1 is a crucial regulator for immune cell development by connecting PI3K to downstream AKT signaling. However, the roles of PDK1 in CD4+ T cell differentiation, especially in T follicular helper (Tfh) cell, remain obscure. Here we reported PDK1 intrinsically promotes the Tfh cell differentiation and germinal center responses upon acute infection by using conditional knockout mice. PDK1 deficiency in T cells caused severe defects in both early differentiation and late maintenance of Tfh cells. The expression of key Tfh regulators was remarkably downregulated in PDK1-deficient Tfh cells, including Tcf7, Bcl6, Icos, and Cxcr5. Mechanistically, ablation of PDK1 led to impaired phosphorylation of AKT and defective activation of mTORC1, resulting in substantially reduced expression of Hif1α and p-STAT3. Meanwhile, decreased p-AKT also suppresses mTORC2-associated GSK3β activity in PDK1-deficient Tfh cells. These integrated effects contributed to the dramatical reduced expression of TCF1 and ultimately impaired the Tfh cell differentiation.


SRSF1 serves as a critical posttranscriptional regulator at the late stage of thymocyte development.

  • Zhihong Qi‎ et al.
  • Science advances‎
  • 2021‎

The underlying mechanisms of thymocyte maturation remain largely unknown. Here, we report that serine/arginine-rich splicing factor 1 (SRSF1) intrinsically regulates the late stage of thymocyte development. Conditional deletion of SRSF1 resulted in severe defects in maintenance of late thymocyte survival and a blockade of the transition of TCRβhiCD24+CD69+ immature to TCRβhiCD24-CD69- mature thymocytes, corresponding to a notable reduction of recent thymic emigrants and diminished periphery T cell pool. Mechanistically, SRSF1 regulates the gene networks involved in thymocyte differentiation, proliferation, apoptosis, and type I interferon signaling pathway to safeguard T cell intrathymic maturation. In particular, SRSF1 directly binds and regulates Irf7 and Il27ra expression via alternative splicing in response to type I interferon signaling. Moreover, forced expression of interferon regulatory factor 7 rectifies the defects in SRSF1-deficient thymocyte maturation via restoring expression of type I interferon-related genes. Thus, our work provides new insight on SRSF1-mediated posttranscriptional regulatory mechanism of thymocyte development.


SRSF1 Deficiency Impairs the Late Thymocyte Maturation and the CD8 Single-Positive Lineage Fate Decision.

  • Ce Ji‎ et al.
  • Frontiers in immunology‎
  • 2022‎

The underlying mechanisms of thymocyte development and lineage determination remain incompletely understood, and the emerging evidences demonstrated that RNA binding proteins (RBPs) are deeply involved in governing T cell fate in thymus. Serine/arginine-rich splicing factor 1 (SRSF1), as a classical splicing factor, is a pivotal RBP for gene expression in various biological processes. Our recent study demonstrated that SRSF1 plays essential roles in the development of late thymocytes by modulating the T cell regulatory gene networks post-transcriptionally, which are critical in response to type I interferon signaling for supporting thymocyte maturation. Here, we report SRSF1 also contributes to the determination of the CD8+ T cell fate. By specific ablation of SRSF1 in CD4+CD8+ double positive (DP) thymocytes, we found that SRSF1 deficiency impaired the maturation of late thymocytes and diminished the output of both CD4+ and CD8+ single positive T cells. Interestingly, the ratio of mature CD4+ to CD8+ cells was notably altered and more severe defects were exhibited in CD8+ lineage than those in CD4+ lineage, reflecting the specific function of SRSF1 in CD8+ T cell fate decision. Mechanistically, SRSF1-deficient cells downregulate their expression of Runx3, which is a crucial transcriptional regulator in sustaining CD8+ single positive (SP) thymocyte development and lineage choice. Moreover, forced expression of Runx3 partially rectified the defects in SRSF1-deficient CD8+ thymocyte maturation. Thus, our data uncovered the previous unknown role of SRSF1 in establishment of CD8+ cell identity.


GA-binding protein GABPβ1 is required for the proliferation of neural stem/progenitor cells.

  • Cong Liu‎ et al.
  • Stem cell research‎
  • 2019‎

GA binding protein (GABP) is a ubiquitously expressed transcription factor that regulates the development of multiple cell types, including osteoblast, hematopoietic stem cells, B cells and T cells. However, so little is known about its biological function in the development of central nervous system. In this report, we show that GABP is highly expressed in neural stem/progenitor cells (NSPCs) and down-regulated in neurons, and that GABPβ1 is required for the proper proliferation of NSPCs. Knockdown of GABPα resulted in an elevated expression level of GABPβ1, and GABPβ1 down-regulation significantly decreased the proliferation of NSPCs, whereas GABPβ2 knockdown did not result in any changes in the proliferation of NSPCs. We observed that there was nearly a 21-fold increase of the GABPβ1S mRNA level in GABPβ1L KO NSPCs compared to WT cells, and knocking down of GABPβ1S in GABPβ1L KO NSPCs could further reduce their proliferation potential. We also found that knockdown of GABPβ1 promoted neuronal and astrocytic differentiation of NSPCs. Finally, we identified dozens of downstream target genes of GABPβ1, which are closely associated with the cell proliferation and differentiation. Collectively, our results suggest that both GABPβ1L and GABPβ1S play an essential role in regulating the proper proliferation and differentiation of NSPCs.


TCF-1 upregulation identifies early innate lymphoid progenitors in the bone marrow.

  • Qi Yang‎ et al.
  • Nature immunology‎
  • 2015‎

The cellular and molecular events that drive the early development of innate lymphoid cells (ILCs) remain poorly understood. We show that the transcription factor TCF-1 is required for the efficient generation of all known adult ILC subsets and their precursors. Using novel reporter mice, we identified a new subset of early ILC progenitors (EILPs) expressing high amounts of TCF-1. EILPs lacked efficient T and B lymphocyte potential but efficiently gave rise to NK cells and all known adult helper ILC lineages, indicating that they are the earliest ILC-committed progenitors identified so far. Our results suggest that upregulation of TCF-1 expression denotes the earliest stage of ILC fate specification. The discovery of EILPs provides a basis for deciphering additional signals that specify ILC fate.


Heterochronic parabiosis induces stem cell revitalization and systemic rejuvenation across aged tissues.

  • Shuai Ma‎ et al.
  • Cell stem cell‎
  • 2022‎

The young circulatory milieu capable of delaying aging in individual tissues is of interest as rejuvenation strategies, but how it achieves cellular- and systemic-level effects has remained unclear. Here, we constructed a single-cell transcriptomic atlas across aged tissues/organs and their rejuvenation in heterochronic parabiosis (HP), a classical model to study systemic aging. In general, HP rejuvenated adult stem cells and their niches across tissues. In particular, we identified hematopoietic stem and progenitor cells (HSPCs) as one of the most responsive cell types to young blood exposure, from which a continuum of cell state changes across the hematopoietic and immune system emanated, through the restoration of a youthful transcriptional regulatory program and cytokine-mediated cell-cell communications in HSPCs. Moreover, the reintroduction of the identified rejuvenating factors alleviated age-associated lymphopoiesis decline. Overall, we provide comprehensive frameworks to explore aging and rejuvenating trajectories at single-cell resolution and revealed cellular and molecular programs that instruct systemic revitalization by blood-borne factors.


Developing a Triple Transgenic Cell Line for High-Efficiency Porcine Reproductive and Respiratory Syndrome Virus Infection.

  • Linlin Zhang‎ et al.
  • PloS one‎
  • 2016‎

Porcine reproductive and respiratory syndrome virus (PRRSV) is one of the most devastating pathogens in the swine industry worldwide. Due to the lack of robust cell lines and small animal models, the pathogenesis of PRRSV infection and mechanism for protective vaccination are still not yet well understood. To obtain useful cell lines, several groups have attempted to construct different transgenic cell lines with three PRRSV receptors: CD163, CD169, and CD151. The results showed that CD163 is essential for PRRSV entry into target cells and replication, and both CD169 and CD151 play key roles during PRRSV infection. However, their interplay and combined effect remains unclear. In this study, we generated transgenic BHK-21 derived cell lines co-expressing different combinations of the three receptors, which were transfected with CD163 alone, or the combination of CD163 and CD169, or the combination of CD163 and CD151, or the combination of CD163, CD169, and CD151 using the PiggyBac transposon system. Our results showed that the synergistic interaction among the three receptors was important to improve the susceptibility of cells during PRRSV infection. Through a series of comparable analyses, we confirmed that the cell line co-expressing triple receptors sustained viral infection and replication, and was superior to the current cell platform used for the PRRSV study, MARC-145 cells. Moreover, we found that PRRSV infection of the transgenic cell lines could trigger IFN-stimulated gene responses similar to those of porcine alveolar macrophages and MARC-145 cells. In summary, we developed a stable transgenic cell line susceptible to PRRSV, which may not only provide a useful tool for virus propagation, vaccine development, and pathogenesis studies, but also establish the foundation for small animal model development.


Tle corepressors are differentially partitioned to instruct CD8+ T cell lineage choice and identity.

  • Shaojun Xing‎ et al.
  • The Journal of experimental medicine‎
  • 2018‎

Tle/Groucho proteins are transcriptional corepressors interacting with Tcf/Lef and Runx transcription factors, but their physiological roles in T cell development remain unknown. Conditional targeting of Tle1, Tle3 and Tle4 revealed gene dose-dependent requirements for Tle proteins in CD8+ lineage cells. Upon ablating all three Tle proteins, generation of CD8+ T cells was greatly diminished, largely owing to redirection of MHC-I-selected thymocytes to CD4+ lineage; the remaining CD8-positive T cells showed aberrant up-regulation of CD4+ lineage-associated genes including Cd4, Thpok, St8sia6, and Foxp3 Mechanistically, Tle3 bound to Runx-occupied Thpok silencer, in post-selection double-positive thymocytes to prevent excessive ThPOK induction and in mature CD8+ T cells to silence Thpok expression. Tle3 also bound to Tcf1-occupied sites in a few CD4+ lineage-associated genes, including Cd4 silencer and St8sia6 introns, to repress their expression in mature CD8+ T cells. These findings indicate that Tle corepressors are differentially partitioned to Runx and Tcf/Lef complexes to instruct CD8+ lineage choice and cooperatively establish CD8+ T cell identity, respectively.


Molecular Characteristics of Methicillin-Resistant and Susceptible Staphylococcus aureus from Pediatric Patients in Eastern China.

  • Yuxuan Zhou‎ et al.
  • Pathogens (Basel, Switzerland)‎
  • 2023‎

Staphylococcus aureus is an opportunistic pathogen that causes invasive infections in humans. In recent years, increasing studies have focused on the prevalence of S. aureus infections in adults; however, the epidemiology and molecular characteristics of S. aureus from Chinese pediatric patients remain unknown. The present study examined the population structure, antimicrobial resistance, and virulent factors of methicillin-resistant and -susceptible S. aureus isolated from Chinese pediatric patients from one medical center in eastern China. A total of 81 cases were screened with positive S. aureus infections among 864 pediatric patients between 2016 and 2022 in eastern China. Molecular analysis showed that ST22 (28.4%) and ST59 (13.6%) were the most typical strains, and associations between different clonal complex (CC) types/serotype types (ST) and the age of pediatric patients were observed in this study. CC398 was the predominant type in neonates under 1 month of age, while CC22 was mainly found in term-infant (under 1 year of age) and toddlers (over 1 year of age). Additionally, 17 S. aureus isolates were resistant to at least three antimicrobials and majority of them belonged to CC59. The blaZ gene was found in 59 isolates and mecA gene was present in 26 strains identified as methicillin-resistant. Numerous virulent factors were detected in S. aureus isolated from present pediatric patients. Remarkably, lukF-PV and lukS-PV were dominantly carried by CC22, tsst-1 genes were detected in CC188, CC7, and CC15, while exfoliative toxin genes were found only in CC121. Only 41.98% of the S. aureus isolates possessed scn gene, indicating that the sources of infections in pediatric patients may include both human-to-human transmissions as well as environmental and nosocomial infections. Together, the present study provided a phylogenetic and genotypic comparison of S. aureus from Chinese pediatric patients in Suzhou city. Our results suggested that the colonization of multi-drug resistant isolates of S. aureus may raise concern among pediatric patients, at least from the present medical center in eastern China.


CD8+ T Cells Utilize Highly Dynamic Enhancer Repertoires and Regulatory Circuitry in Response to Infections.

  • Bing He‎ et al.
  • Immunity‎
  • 2016‎

Differentiation of effector and memory CD8+ T cells is accompanied by extensive changes in the transcriptome and histone modifications at gene promoters; however, the enhancer repertoire and associated gene regulatory networks are poorly defined. Using histone mark chromatin immunoprecipitation coupled with deep sequencing, we mapped the enhancer and super-enhancer landscapes in antigen-specific naive, differentiated effector, and central memory CD8+ T cells during LCMV infection. Epigenomics-based annotation revealed a highly dynamic repertoire of enhancers, which were inherited, de novo activated, decommissioned and re-activated during CD8+ T cell responses. We employed a computational algorithm to pair enhancers with target gene promoters. On average, each enhancer targeted three promoters and each promoter was regulated by two enhancers. By identifying enriched transcription factor motifs in enhancers, we defined transcriptional regulatory circuitry at each CD8+ T cell response stage. These multi-dimensional datasets provide a blueprint for delineating molecular mechanisms underlying functional differentiation of CD8+ T cells.


The RNA-binding protein ROD1/PTBP3 cotranscriptionally defines AID-loading sites to mediate antibody class switch in mammalian genomes.

  • Juan Chen‎ et al.
  • Cell research‎
  • 2018‎

Activation-induced cytidine deaminase (AID) mediates class switching by binding to a small fraction of single-stranded DNA (ssDNA) to diversify the antibody repertoire. The precise mechanism for highly selective AID targeting in the genome has remained elusive. Here, we report an RNA-binding protein, ROD1 (also known as PTBP3), that is both required and sufficient to define AID-binding sites genome-wide in activated B cells. ROD1 interacts with AID via an ultraconserved loop, which proves to be critical for the recruitment of AID to ssDNA using bi-directionally transcribed nascent RNAs as stepping stones. Strikingly, AID-specific mutations identified in human patients with hyper-IgM syndrome type 2 (HIGM2) completely disrupt the AID interacting surface with ROD1, thereby abolishing the recruitment of AID to immunoglobulin (Ig) loci. Together, our results suggest that bi-directionally transcribed RNA traps the RNA-binding protein ROD1, which serves as a guiding system for AID to load onto specific genomic loci to induce DNA rearrangement during immune responses.


Breast cancer exosomes contribute to pre-metastatic niche formation and promote bone metastasis of tumor cells.

  • Xinxin Yuan‎ et al.
  • Theranostics‎
  • 2021‎

Rationale: Breast cancer preferentially develops osteolytic bone metastasis, which makes patients suffer from pain, fractures and spinal cord compression. Accumulating evidences have shown that exosomes play an irreplaceable role in pre-metastatic niche formation as a communication messenger. However, the function of exosomes secreted by breast cancer cells remains incompletely understood in bone metastasis of breast cancer. Methods: Mouse xenograft models and intravenous injection of exosomes were applied for analyzing the role of breast cancer cell-derived exosomes in vivo. Effects of exosomes secreted by the mildly metastatic MDA231 and its subline SCP28 with highly metastatic ability on osteoclasts formation were confirmed by TRAP staining, ELISA, microcomputed tomography, histomorphometric analyses, and pit formation assay. The candidate exosomal miRNAs for promoting osteoclastogenesis were globally screened by RNA-seq. qRT-PCR, western blot, confocal microscopy, and RNA interfering were performed to validate the function of exosomal miRNA. Results: Implantation of SCP28 tumor cells in situ leads to increased osteoclast activity and reduced bone density, which contributes to the formation of pre-metastatic niche for tumor cells. We found SCP28 cells-secreted exosomes are critical factors in promoting osteoclast differentiation and activation, which consequently accelerates bone lesion to reconstruct microenvironment for bone metastasis. Mechanistically, exosomal miR-21 derived from SCP28 cells facilitates osteoclastogenesis through regulating PDCD4 protein levels. Moreover, miR-21 level in serum exosomes of breast cancer patients with bone metastasis is significantly higher than that in other subpopulations. Conclusion: Our results indicate that breast cancer cell-derived exosomes play an important role in promoting breast cancer bone metastasis, which is associated with the formation of pre-metastatic niche via transferring miR-21 to osteoclasts. The data from patient samples further reflect the significance of miR-21 as a potential target for clinical diagnosis and treatment of breast cancer bone metastasis.


The transcription factor lymphoid enhancer factor 1 controls invariant natural killer T cell expansion and Th2-type effector differentiation.

  • Tiffany Carr‎ et al.
  • The Journal of experimental medicine‎
  • 2015‎

Invariant natural killer T cells (iNKT cells) are innate-like T cells that rapidly produce cytokines that impact antimicrobial immune responses, asthma, and autoimmunity. These cells acquire multiple effector fates during their thymic development that parallel those of CD4(+) T helper cells. The number of Th2-type effector iNKT cells is variable in different strains of mice, and their number impacts CD8 T, dendritic, and B cell function. Here we demonstrate a unique function for the transcription factor lymphoid enhancer factor 1 (LEF1) in the postselection expansion of iNKT cells through a direct induction of the CD127 component of the receptor for interleukin-7 (IL-7) and the transcription factor c-myc. LEF1 also directly augments expression of the effector fate-specifying transcription factor GATA3, thus promoting the development of Th2-like effector iNKT cells that produce IL-4, including those that also produce interferon-γ. Our data reveal LEF1 as a central regulator of iNKT cell number and Th2-type effector differentiation.


Tcf1 Sustains the Expression of Multiple Regulators in Promoting Early Natural Killer Cell Development.

  • Juanjuan Liu‎ et al.
  • Frontiers in immunology‎
  • 2021‎

T cell factor 1 (Tcf1) is known as a critical mediator for natural killer (NK) cell development and terminal maturation. However, its essential targets and precise mechanisms involved in early NK progenitors (NKP) are not well clarified. To investigate the role of Tcf1 in NK cells at distinct developmental phases, we employed three kinds of genetic mouse models, namely, Tcf7fl/flVavCre/+, Tcf7fl/flCD122Cre/+ and Tcf7fl/flNcr1Cre/+ mice, respectively. Similar to Tcf1 germline knockout mice, we found notably diminished cell number and defective development in BM NK cells from all strains. In contrast, Tcf7fl/flNcr1Cre/+ mice exhibited modest defects in splenic NK cells compared with those in the other two strains. By analyzing the published ATAC-seq and ChIP-seq data, we found that Tcf1 directly targeted 110 NK cell-related genes which displayed differential accessibility in the absence of Tcf1. Along with this clue, we further confirmed that a series of essential regulators were expressed aberrantly in distinct BM NK subsets with conditional ablating Tcf1 at NKP stage. Eomes, Ets1, Gata3, Ikzf1, Ikzf2, Nfil3, Runx3, Sh2d1a, Slamf6, Tbx21, Tox, and Zeb2 were downregulated, whereas Spi1 and Gzmb were upregulated in distinct NK subsets due to Tcf1 deficiency. The dysregulation of these genes jointly caused severe defects in NK cells lacking Tcf1. Thus, our study identified essential targets of Tcf1 in NK cells, providing new insights into Tcf1-dependent regulatory programs in step-wise governing NK cell development.


METTL3-dependent m6A modification programs T follicular helper cell differentiation.

  • Yingpeng Yao‎ et al.
  • Nature communications‎
  • 2021‎

T follicular helper (TFH) cells are specialized effector CD4+ T cells critical to humoral immunity. Whether post-transcriptional regulation has a function in TFH cells is unknown. Here, we show conditional deletion of METTL3 (a methyltransferase catalyzing mRNA N6-methyladenosine (m6A) modification) in CD4+ T cells impairs TFH differentiation and germinal center responses in a cell-intrinsic manner in mice. METTL3 is necessary for expression of important TFH signature genes, including Tcf7, Bcl6, Icos and Cxcr5 and these effects depend on intact methyltransferase activity. m6A-miCLIP-seq shows the 3' UTR of Tcf7 mRNA is subjected to METTL3-dependent m6A modification. Loss of METTL3 or mutation of the Tcf7 3' UTR m6A site results in accelerated decay of Tcf7 transcripts. Importantly, ectopic expression of TCF-1 (encoded by Tcf7) rectifies TFH defects owing to METTL3 deficiency. Our findings indicate that METTL3 stabilizes Tcf7 transcripts via m6A modification to ensure activation of a TFH transcriptional program, indicating a pivotal function of post-transcriptional regulation in promoting TFH cell differentiation.


Genetic Removal of the CH1 Exon Enables the Production of Heavy Chain-Only IgG in Mice.

  • Tianyi Zhang‎ et al.
  • Frontiers in immunology‎
  • 2018‎

Nano-antibodies possess great potential in many applications. However, they are naturally derived from heavy chain-only antibodies (HcAbs), which lack light chains and the CH1 domain, and are only found in camelids and sharks. In this study, we investigated whether the precise genetic removal of the CH1 exon of the γ1 gene enabled the production of a functional heavy chain-only IgG1 in mice. IgG1 heavy chain dimers lacking associated light chains were detected in the sera of the genetically modified mice. However, the genetic modification led to decreased expression of IgG1 but increased expression of other IgG subclasses. The genetically modified mice showed a weaker immune response to specific antigens compared with wild type mice. Using a phage-display approach, antigen-specific, single domain VH antibodies could be screened from the mice but exhibited much weaker antigen binding affinity than the conventional monoclonal antibodies. Although the strategy was only partially successful, this study confirms the feasibility of producing desirable nano-bodies with appropriate genetic modifications in mice.


Mettl3-m6A-Creb1 forms an intrinsic regulatory axis in maintaining iNKT cell pool and functional differentiation.

  • Menghao You‎ et al.
  • Cell reports‎
  • 2023‎

N6-methyladenosine (m6A) methyltransferase Mettl3 is involved in conventional T cell immunity; however, its role in innate immune cells remains largely unknown. Here, we show that Mettl3 intrinsically regulates invariant natural killer T (iNKT) cell development and function in an m6A-dependent manner. Conditional ablation of Mettl3 in CD4+CD8+ double-positive (DP) thymocytes impairs iNKT cell proliferation, differentiation, and cytokine secretion, which synergistically causes defects in B16F10 melanoma resistance. Transcriptomic and epi-transcriptomic analyses reveal that Mettl3 deficiency disturbs the expression of iNKT cell-related genes with altered m6A modification. Strikingly, Mettl3 modulates the stability of the Creb1 transcript, which in turn controls the protein and phosphorylation levels of Creb1. Furthermore, conditional targeting of Creb1 in DP thymocytes results in similar phenotypes of iNKT cells lacking Mettl3. Importantly, ectopic expression of Creb1 largely rectifies such developmental defects in Mettl3-deficient iNKT cells. These findings reveal that the Mettl3-m6A-Creb1 axis plays critical roles in regulating iNKT cells at the post-transcriptional layer.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: