Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 44 papers

Phosphoinositide 3-kinase signaling pathway mediated by p110α regulates invadopodia formation.

  • Hideki Yamaguchi‎ et al.
  • The Journal of cell biology‎
  • 2011‎

Invadopodia are extracellular matrix-degrading protrusions formed by invasive cancer cells that are thought to function in cancer invasion. Although many invadopodia components have been identified, signaling pathways that link extracellular stimuli to invadopodia formation remain largely unknown. We investigate the role of phosphoinositide 3-kinase (PI3K) signaling during invadopodia formation. We find that in human breast cancer cells, both invadopodia formation and degradation of a gelatin matrix were blocked by treatment with PI3K inhibitors or sequestration of D-3 phosphoinositides. Functional analyses revealed that among the PI3K family proteins, the class I PI3K catalytic subunit p110α, a frequently mutated gene product in human cancers, was selectively involved in invadopodia formation. The expression of p110α with cancerous mutations promoted invadopodia-mediated invasive activity. Furthermore, knockdown or inhibition of PDK1 and Akt, downstream effectors of PI3K signaling, suppressed invadopodia formation induced by p110α mutants. These data suggest that PI3K signaling via p110α regulates invadopodia-mediated invasion of breast cancer cells.


Topical co-administration of zoledronate with recombinant human bone morphogenetic protein-2 can induce and maintain bone formation in the bone marrow environment.

  • Hideki Ueyama‎ et al.
  • BMC musculoskeletal disorders‎
  • 2021‎

Bone morphogenetic proteins (BMPs) induce osteogenesis in various environments. However, when BMPs are used alone in the bone marrow environment, the maintenance of new bone formation is difficult owing to vigorous bone resorption. This is because BMPs stimulate the differentiation of not only osteoblast precursor cells but also osteoclast precursor cells. The present study aimed to induce and maintain new bone formation using the topical co-administration of recombinant human BMP-2 (rh-BMP-2) and zoledronate (ZOL) on beta-tricalcium phosphate (β-TCP) composite.


Reduced dynamic loads due to hip dislocation induce acetabular cartilage degeneration by IL-6 and MMP3 via the STAT3/periostin/NF-κB axis.

  • Yutaka Nakamura‎ et al.
  • Scientific reports‎
  • 2022‎

Developmental dysplasia of the hip (DDH) is characterized by anatomical abnormalities of the hip joint, ranging from mild acetabular dysplasia to hip subluxation and eventually dislocation. The mechanism underlying the cartilage degeneration of the hip joints exposed to reduced dynamic loads due to hip dislocation remains unknown. We established a rodent hip dislocation (disarticulation; DA) model of DDH (DA-DDH rats and mice) by swaddling. Expression levels of periostin (Postn) and catabolic factors, such as interleukin-6 (IL-6) and matrix metalloproteinase 3 (Mmp3), increased and those of chondrogenic markers decreased in the acetabular cartilage of the DA-DDH models. Postn induced IL-6 and Mmp3 expression in chondrocytes through integrin αVβ3, focal adhesion kinase, Src, and nuclear factor-κB (NF-κB) signaling. The microgravity environment created by a random positioning machine induced Postn expression in chondrocytes through signal transducer and activator of transcription 3 (STAT3) signaling. IL-6 stimulated Postn expression via STAT3 signaling. Furthermore, cartilage degeneration was suppressed in the acetabulum of Postn-/- DA-DDH mice compared with that in the acetabulum of wild type DA-DDH mice. In summary, reduced dynamic loads due to hip dislocation induced acetabular cartilage degeneration via IL-6 and MMP3 through STAT3/periostin/NF-κB signaling in the rodent DA-DDH models.


The effects of resistance training on bone mineral density and bone quality in type 2 diabetic rats.

  • Aoi Ikedo‎ et al.
  • Physiological reports‎
  • 2019‎

Resistance training (RT) has been known to be effective in maintaining and improving bone strength, which is based on bone mineral density (BMD) and bone quality. However, it is not clear whether RT is effective in improving bone strength in patients with type-2 diabetes mellitus (T2DM), who have a high risk of fracture. Therefore, we tested the effects of a 6-week RT regimen using percutaneous electrical stimulation in T2DM model rats, male Otsuka Long-Evans Tokushima Fatty (OLETF), and its control, Long-Evans Tokushima Otsuka (LETO). After 6 weeks of RT, tibial BMD in RT legs was significantly higher than that in control (CON) legs in both groups. In diaphyseal cortical bone, bone area/tissue area, and cortical thickness was significantly increased in RT legs compared with CON legs in both groups. Cortical porosity was highly observed in OLETF compared with LETO, but RT improved cortical porosity in both groups. Interestingly, trabecular number, trabecular thickness and trabecular space as well as BMD and bone volume/tissue volume in proximal tibial metaphyseal trabecular bone were significantly improved in RT legs compared with CON legs in both groups. In contrast, connectivity density and structural model index were not affected by RT. These results indicate that the 6-week RT regimen effectively increased BMD and improved bone quality in T2DM model rats as well as control rats. Therefore, RT may have the potential to improve bone strength and reduce fracture risk, even in patients with T2DM.


Identification of Nedd9 as a TGF-β-Smad2/3 Target Gene Involved in RANKL-Induced Osteoclastogenesis by Comprehensive Analysis.

  • Yasunori Omata‎ et al.
  • PloS one‎
  • 2016‎

TGF-ß is a multifunctional cytokine that is involved in cell proliferation, differentiation and function. We previously reported an essential role of the TGF-ß -Smad2/3 pathways in RANKL-induced osteoclastogenesis. Using chromatin immunoprecipitation followed by sequencing, we comprehensively identified Smad2/3 target genes in bone marrow macrophages. These genes were enriched in the gene population upregulated by TGF-ß and downregulated by RANKL. Recent studies have revealed that histone modifications, such as trimethylation of histone H3 lysine 4 (H3K4me3) and lysine 27 (H3K27me3), critically regulate key developmental steps. We identified Nedd9 as a Smad2/3 target gene whose histone modification pattern was converted from H3K4me3(+)/H3K4me27(+) to H3K4me3(+)/H3K4me27(-) by TGF-ß. Nedd9 expression was increased by TGF-ß and suppressed by RANKL. Overexpression of Nedd9 partially rescued an inhibitory effect of a TGF-ß inhibitor, while gene silencing of Nedd9 suppressed RANKL-induced osteoclastogenesis. RANKL-induced osteoclastogenesis were reduced and stimulatory effects of TGF-ß on RANKL-induced osteoclastogenesis were partially abrogated in cells from Nedd9-deficient mice although knockout mice did not show abnormal skeletal phenotypes. These results suggest that Nedd9 is a Smad2/3 target gene implicated in RANKL-induced osteoclastogenesis.


Slug increases sensitivity to tubulin-binding agents via the downregulation of βIII and βIVa-tubulin in lung cancer cells.

  • Daisuke Tamura‎ et al.
  • Cancer medicine‎
  • 2013‎

Transcription factor Slug/SNAI2 (snail homolog 2) plays a key role in the induction of the epithelial mesenchymal transition in cancer cells; however, whether the overexpression of Slug mediates the malignant phenotype and alters drug sensitivity in lung cancer cells remains largely unclear. We investigated Slug focusing on its biological function and involvement in drug sensitivity in lung cancer cells. Stable Slug transfectants showed typical morphological changes compared with control cells. Slug overexpression did not change the cellular proliferations; however, migration activity and anchorage-independent growth activity with an antiapoptotic effect were increased. Interestingly, stable Slug overexpression increased drug sensitivity to tubulin-binding agents including vinorelbine, vincristine, and paclitaxel (5.8- to 8.9-fold increase) in several lung cancer cell lines but did not increase sensitivity to agents other than tubulin-binding agents. Real-time RT-PCR (polymerase chain reaction) and western blotting revealed that Slug overexpression downregulated the expression of βIII and βIVa-tubulin, which is considered to be a major factor determining sensitivity to tubulin-binding agents. A luciferase reporter assay confirmed that Slug suppressed the promoter activity of βIVa-tubulin at a transcriptional level. Slug overexpression enhanced tumor growth, whereas Slug overexpression increased drug sensitivity to vinorelbine with the downregulation of βIII and βIV-tubulin in vivo. Immunohistochemistry of Slug with clinical lung cancer samples showed that Slug overexpression tended to be involved in response to tubulin-binding agents. In conclusion, our data indicate that Slug mediates an aggressive phenotype including enhanced migration activity, anoikis suppression, and tumor growth, but increases sensitivity to tubulin-binding agents via the downregulation of βIII and βIVa-tubulin in lung cancer cells.


Stable kinetochore-microtubule attachments restrict MTOC position and spindle elongation in oocytes.

  • Aurélien Courtois‎ et al.
  • EMBO reports‎
  • 2021‎

In mouse oocytes, acentriolar MTOCs functionally replace centrosomes and act as microtubule nucleation sites. Microtubules nucleated from MTOCs initially assemble into an unorganized ball-like structure, which then transforms into a bipolar spindle carrying MTOCs at its poles, a process called spindle bipolarization. In mouse oocytes, spindle bipolarization is promoted by kinetochores but the mechanism by which kinetochore-microtubule attachments contribute to spindle bipolarity remains unclear. This study demonstrates that the stability of kinetochore-microtubule attachment is essential for confining MTOC positions at the spindle poles and for limiting spindle elongation. MTOC sorting is gradual and continues even in the metaphase spindle. When stable kinetochore-microtubule attachments are disrupted, the spindle is unable to restrict MTOCs at its poles and fails to terminate its elongation. Stable kinetochore fibers are directly connected to MTOCs and to the spindle poles. These findings suggest a role for stable kinetochore-microtubule attachments in fine-tuning acentrosomal spindle bipolarity.


DNA maintenance methylation enzyme Dnmt1 in satellite cells is essential for muscle regeneration.

  • Hiroyuki Iio‎ et al.
  • Biochemical and biophysical research communications‎
  • 2021‎

Epigenetic transcriptional regulation is essential for the differentiation of various types of cells, including skeletal muscle cells. DNA methyltransferase 1 (Dnmt1) is responsible for maintenance of DNA methylation patterns via cell division. Here, we investigated the relationship between Dnmt1 and skeletal muscle regeneration. We found that Dnmt1 is upregulated in muscles during regeneration. To assess the role of Dnmt1 in satellite cells during regeneration, we performed conditional knockout (cKO) of Dnmt1 specifically in skeletal muscle satellite cells using Pax7CreERT2 mice and Dnmt1 flox mice. Muscle weight and the cross-sectional area after injury were significantly lower in Dnmt1 cKO mice than in control mice. RNA sequencing analysis revealed upregulation of genes involved in cell adhesion and apoptosis in satellite cells from cKO mice. Moreover, satellite cells cultured from cKO mice exhibited a reduced number of cells. These results suggest that Dnmt1 is an essential factor for muscle regeneration and is involved in positive regulation of satellite cell number.


Macrophages are requisite for angiogenesis of type H vessels during bone regeneration in mice.

  • Yukihiro Kohara‎ et al.
  • Bone‎
  • 2022‎

Macrophages are progenitors of osteoclasts as well as regulators of bone metabolism. Macrophages mediate not only bone formation by osteoblasts under physiological conditions, but also bone regeneration after fracture. The mechanisms of macrophages regulation of bone formation and regeneration remain unclear, however. Here, we demonstrate that the liposome-encapsulated Clodronate (Clod-lip) injected mouse model with cortical bone defect induced by drill-hole injury and targeted depletion of phagocytic macrophages exhibits impaired angiogenesis of type H vessels that couple angiogenesis and osteogenesis. Moreover, we identify Tgfbi (encoding TGFBI), Plau (encoding uPA) and Tgfb1 (encoding TGF-β1), through RNA-seq analysis, as genes of macrophage-secreted factors mediating angiogenesis and wound healing. The relevant mRNA was highly expressed in bone marrow-derived macrophages among bone cells, as determined through qRT-PCR. Finally, we disclose that treatment with uPA inhibitor or TGF-β receptor I, receptor II inhibitor impairs bone regeneration after injury, confirming the importance of uPA and TGF-β1 during bone regeneration. Our findings reveal a novel mechanism of bone regeneration mediated by macrophages.


Lenalidomide derivatives and proteolysis-targeting chimeras for controlling neosubstrate degradation.

  • Satoshi Yamanaka‎ et al.
  • Nature communications‎
  • 2023‎

Lenalidomide, an immunomodulatory drug (IMiD), is commonly used as a first-line therapy in many haematological cancers, such as multiple myeloma (MM) and 5q myelodysplastic syndromes (5q MDS), and it functions as a molecular glue for the protein degradation of neosubstrates by CRL4CRBN. Proteolysis-targeting chimeras (PROTACs) using IMiDs with a target protein binder also induce the degradation of target proteins. The targeted protein degradation (TPD) of neosubstrates is crucial for IMiD therapy. However, current IMiDs and IMiD-based PROTACs also break down neosubstrates involved in embryonic development and disease progression. Here, we show that 6-position modifications of lenalidomide are essential for controlling neosubstrate selectivity; 6-fluoro lenalidomide induced the selective degradation of IKZF1, IKZF3, and CK1α, which are involved in anti-haematological cancer activity, and showed stronger anti-proliferative effects on MM and 5q MDS cell lines than lenalidomide. PROTACs using these lenalidomide derivatives for BET proteins induce the selective degradation of BET proteins with the same neosubstrate selectivity. PROTACs also exert anti-proliferative effects in all examined cell lines. Thus, 6-position-modified lenalidomide is a key molecule for selective TPD using thalidomide derivatives and PROTACs.


Establishment of a uniform histological evaluation method for early stage osteophytes in the destabilization of the medial meniscus mouse model.

  • Akihiro Jono‎ et al.
  • Osteoarthritis and cartilage open‎
  • 2023‎

Osteophyte formation is attracting attention as an early-stage pathology of knee osteoarthritis (OA). Although osteophyte formation is understood as a defense response to joint instability, its role and impact on OA remain largely unknown. Many studies have been conducted using the surgical destabilization of the medial meniscus (DMM) mouse model, but there are few standard evaluation methods, especially in the histological evaluation of early-stage osteophytes. The purpose of this study was to establish a reproducible and uniform method for histological evaluation of characteristics of early osteophyte formation in the DMM mouse model.


The tumor suppressor menin prevents effector CD8 T-cell dysfunction by targeting mTORC1-dependent metabolic activation.

  • Junpei Suzuki‎ et al.
  • Nature communications‎
  • 2018‎

While menin plays an important role in preventing T-cell dysfunction, such as senescence and exhaustion, the regulatory mechanisms remain unclear. We found that menin prevents the induction of dysfunction in activated CD8 T cells by restricting the cellular metabolism. mTOR complex 1 (mTORC1) signaling, glycolysis, and glutaminolysis are augmented by menin deficiency. Rapamycin treatment prevents CD8 T-cell dysfunction in menin-deficient CD8 T cells. Limited glutamine availability also prevents CD8 T-cell dysfunction induced by menin deficiency, and its inhibitory effect is antagonized by α-ketoglutarate (α-KG), an intermediate metabolite of glutaminolysis. α-KG-dependent histone H3K27 demethylation seems to be involved in the dysfunction in menin-deficient CD8 T cells. We also found that α-KG activates mTORC1-dependent central carbon metabolism. These findings suggest that menin maintains the T-cell functions by limiting mTORC 1 activity and subsequent cellular metabolism.


Nonmyocytic androgen receptor regulates the sexually dimorphic development of the embryonic bulbocavernosus muscle.

  • Lerrie Ann Ipulan‎ et al.
  • Endocrinology‎
  • 2014‎

The bulbocavernosus (BC) is a sexually dimorphic muscle observed only in males. Androgen receptor knockout mouse studies show the loss of BC formation. This suggests that androgen signaling plays a vital role in its development. Androgen has been known to induce muscle hypertrophy through satellite cell activation and myonuclei accretion during muscle regeneration and growth. Whether the same mechanism is present during embryonic development is not yet elucidated. To identify the mechanism of sexual dimorphism during BC development, the timing of morphological differences was first established. It was revealed that the BC was morphologically different between male and female mice at embryonic day (E) 16.5. Differences in the myogenic process were detected at E15.5. The male BC possesses a higher number of proliferating undifferentiated myoblasts. To identify the role of androgen signaling in this process, muscle-specific androgen receptor (AR) mutation was introduced, which resulted in no observable phenotypes. Hence, the expression of AR in the BC was examined and found that the AR did not colocalize with any muscle markers such as Myogenic differentiation 1, Myogenin, and paired box transcription factor 7. It was revealed that the mesenchyme surrounding the BC expressed AR and the BC started to express AR at E15.5. AR mutation on the nonmyocytic cells using spalt-like transcription factor 1 (Sall1) Cre driver mouse was performed, which resulted in defective BC formation. It was revealed that the number of proliferating undifferentiated myoblasts was reduced in the Sall1 Cre:AR(L-/Y) mutant embryos, and the adult mutants were devoid of BC. The transition of myoblasts from proliferation to differentiation is mediated by cyclin-dependent kinase inhibitors. An increased expression of p21 was observed in the BC myoblast of the Sall1 Cre:AR(L-/Y) mutant and wild-type female. Altogether this study suggests that the nonmyocytic AR may paracrinely regulate the proliferation of myoblast possibly through inhibiting p21 expression in myoblasts of the BC.


Uhrf1 is indispensable for normal limb growth by regulating chondrocyte differentiation through specific gene expression.

  • Michiko Yamashita‎ et al.
  • Development (Cambridge, England)‎
  • 2018‎

Transcriptional regulation can be tightly orchestrated by epigenetic regulators. Among these, ubiquitin-like with PHD and RING finger domains 1 (Uhrf1) is reported to have diverse epigenetic functions, including regulation of DNA methylation. However, the physiological functions of Uhrf1 in skeletal tissues remain unclear. Here, we show that limb mesenchymal cell-specific Uhrf1 conditional knockout mice (Uhrf1ΔLimb/ΔLimb ) exhibit remarkably shortened long bones that have morphological deformities due to dysregulated chondrocyte differentiation and proliferation. RNA-seq performed on primary cultured chondrocytes obtained from Uhrf1ΔLimb/ΔLimb mice showed abnormal chondrocyte differentiation. In addition, integrative analyses using RNA-seq and MBD-seq revealed that Uhrf1 deficiency decreased genome-wide DNA methylation and increased gene expression through reduced DNA methylation in the promoter regions of 28 genes, including Hspb1, which is reported to be an IL1-related gene and to affect chondrocyte differentiation. Hspb1 knockdown in cKO chondrocytes can normalize abnormal expression of genes involved in chondrocyte differentiation, such as Mmp13 These results indicate that Uhrf1 governs cell type-specific transcriptional regulation by controlling the genome-wide DNA methylation status and regulating consequent cell differentiation and skeletal maturation.


De novo design of a nanopore for single-molecule detection that incorporates a β-hairpin peptide.

  • Keisuke Shimizu‎ et al.
  • Nature nanotechnology‎
  • 2022‎

The amino-acid sequence of a protein encodes information on its three-dimensional structure and specific functionality. De novo design has emerged as a method to manipulate the primary structure for the development of artificial proteins and peptides with desired functionality. This paper describes the de novo design of a pore-forming peptide, named SV28, that has a β-hairpin structure and assembles to form a stable nanopore in a bilayer lipid membrane. This large synthetic nanopore is an entirely artificial device for practical applications. The peptide forms multidispersely sized nanopore structures ranging from 1.7 to 6.3 nm in diameter and can detect DNAs. To form a monodispersely sized nanopore, we redesigned the SV28 by introducing a glycine-kink mutation. The resulting redesigned peptide forms a monodisperse pore with a diameter of 1.7 nm leading to detection of a single polypeptide chain. Such de novo design of a β-hairpin peptide has the potential to create artificial nanopores, which can be size adjusted to a target molecule.


Histone H3K27 demethylase, Utx, regulates osteoblast-to-osteocyte differentiation.

  • Yuhan Xia‎ et al.
  • Biochemical and biophysical research communications‎
  • 2022‎

Osteocytes are master regulators of skeletal homeostasis. However, little is known about the molecular mechanism of their differentiation. Epigenetic regulations, especially H3K27me3 modification, play critical roles in cell differentiation. Here, we found that H3K27me3 in the loci of osteocyte-expressing genes decreased during osteocyte differentiation and that H3K27me3 demethylase, Utx, was bound to the loci of those genes. To investigate the physiological functions of Utx in vivo, we generated late osteoblast-to-osteocyte specific Utx knockout mice using Dmp1-cre mice (UtxΔOcy/ΔOcy). Micro CT analyses showed that UtxΔOcy/ΔOcy displayed osteopenic phenotypes with lower bone volume and trabecular number, and greater trabecular separation. Bone histomorphometric analysis showed that bone mineralization and formation were significantly lower in UtxΔOcy/ΔOcy. Furthermore, Dmp1 expression and the number of osteocytes were significantly decreased in UtxΔOcy/ΔOcy. These results suggest that Utx in Dmp1-expressing osteoblast/osteocyte positively regulates osteoblast-to-osteocyte differentiation through H3K27me3 modifications in osteocyte genes. Our results provide new insight into the molecular mechanism of osteocyte differentiation.


Periostin increased by mechanical stress upregulates interleukin-6 expression in the ligamentum flavum.

  • Akito Yabu‎ et al.
  • FASEB journal : official publication of the Federation of American Societies for Experimental Biology‎
  • 2023‎

Ligamentum flavum (LF) hypertrophy is a major cause of lumbar spinal canal stenosis. Although mechanical stress is thought to be a major factor involved in LF hypertrophy, the exact mechanism by which it causes hypertrophy has not yet been fully elucidated. Here, changes in gene expression due to long-term mechanical stress were analyzed using RNA-seq in a rabbit LF hypertrophy model. In combination with previously reported analysis results, periostin was identified as a molecule whose expression fluctuates due to mechanical stress. The expression and function of periostin were further investigated using human LF tissues and primary LF cell cultures. Periostin was abundantly expressed in human hypertrophied LF tissues, and periostin gene expression was significantly correlated with LF thickness. In vitro, mechanical stress increased gene expressions of periostin, transforming growth factor-β1, α-smooth muscle actin, collagen type 1 alpha 1, and interleukin-6 (IL-6) in LF cells. Periostin blockade suppressed the mechanical stress-induced gene expression of IL-6 while periostin treatment increased IL-6 gene expression. Our results suggest that periostin is upregulated by mechanical stress and promotes inflammation by upregulating IL-6 expression, which leads to LF degeneration and hypertrophy. Periostin may be a pivotal molecule for LF hypertrophy and a promising therapeutic target for lumbar spinal stenosis.


LIM1 contributes to the malignant potential of endometrial cancer.

  • Hiroaki Kato‎ et al.
  • Frontiers in oncology‎
  • 2023‎

The incidence of endometrial cancer (EC) has been increasing worldwide. However, because there are limited chemotherapeutic options for the treatment of EC, the prognosis of advanced-stage EC is poor.


Transcription factor Fli-1 impacts the expression of CXCL13 and regulates immune cell infiltration into the kidney in MRL/lpr mouse.

  • Shuzo Sato‎ et al.
  • Lupus science & medicine‎
  • 2023‎

Friend leukaemia virus integration 1 (Fli-1) regulates chemokine/cytokine expression and thus plays an important role in the development of lupus nephritis. Chemokine CXC ligand 13 (CXCL13) is a chemokine that promotes the formation of ectopic lymphoid structures and has been reported to be associated with the pathogenesis of lupus nephritis. The relationship between Fli-1 and CXCL13 is unknown. This study aims to elucidate whether Fli-1 impacts CXCL13 expression and contributes to the progression of lupus-like nephritis in adult MRL/lpr mouse.


Peripheral T cell profiling reveals downregulated exhaustion marker and increased diversity in lymphedema post-lymphatic venous anastomosis.

  • Hirofumi Imai‎ et al.
  • iScience‎
  • 2023‎

Lymphedema is a progressive condition accompanying cellulitis and angiosarcoma, suggesting its association with immune dysfunction. Lymphatic venous anastomosis (LVA) can provide relief from cellulitis and angiosarcoma. However, the immune status of peripheral T cells during lymphedema and post-LVA remains poorly understood. Using peripheral blood T cells from lymphedema, post-LVA, and healthy controls (HCs), we compared the profile of T cell subsets and T cell receptor (TCR) diversity. PD-1+ Tim-3 + expression was downregulated in post-LVA compared with lymphedema. IFN-γ levels in CD4+PD-1+ T cells and IL-17A levels in CD4+ T cells were downregulated in post-LVA compared with lymphedema. TCR diversity was decreased in lymphedema compared with HCs; such TCR skewing was drastically improved in post-LVA. T cells in lymphedema were associated with exhaustion, inflammation, and diminished diversity, which were relieved post-LVA. The results provide insights into the peripheral T cell population in lymphedema and highlight the immune modulatory importance of LVA.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: