Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 39 papers

HSV-mediated gene transfer of the glial cell-derived neurotrophic factor provides an antiallodynic effect on neuropathic pain.

  • Shuanglin Hao‎ et al.
  • Molecular therapy : the journal of the American Society of Gene Therapy‎
  • 2003‎

Neuropathic pain is a difficult clinical problem that is often refractory to medical management. Glial-derived neurotrophic factor (GDNF) administered intrathecally has been shown to prevent or reduce pain in an animal model of neuropathic pain, but cannot be delivered in the required doses to treat human pain. We have previously demonstrated that peripheral subcutaneous inoculation of a replication-incompetent herpes simplex virus (HSV)-based vector can be used to transduce neurons of the dorsal root ganglion. To examine whether HSV-mediated expression of GDNF could be used to ameliorate neuropathic pain, we constructed a replication-incompetent HSV vector expressing GDNF. Subcutaneous inoculation of the vector 1 week after spinal nerve ligation resulted in a continuous antiallodynic effect that was maintained for 3-4 weeks. Reinoculation of the vector reestablished the antiallodynic effect with a magnitude that was at least equivalent to the initial effect. Vector-mediated GDNF expression blocked the nonnoxious touch-induced increase in c-fos expression in dorsal horn characteristic of the painful state. Gene transfer to produce a trophic factor offers a novel approach to the treatment of neuropathic pain that may be appropriate for human therapy.


IL-10 mediated by herpes simplex virus vector reduces neuropathic pain induced by HIV gp120 combined with ddC in rats.

  • Wenwen Zheng‎ et al.
  • Molecular pain‎
  • 2014‎

HIV-associated sensory neuropathy affects over 50% of HIV patients and is a common peripheral nerve complication of HIV infection and highly active antiretroviral therapy (HAART). Evidence shows that painful HIV sensory neuropathy is influenced by neuroinflammatory events that include the proinflammatory molecules, MAP Kinase, tumor necrosis factor-α (TNFα), stromal cell-derived factor 1-α (SDF1α), and C-X-C chemokine receptor type 4 (CXCR4). However, the exact mechanisms of painful HIV sensory neuropathy are not known, which hinders our ability to develop effective treatments. In this study, we investigated whether inhibition of proinflammatory factors reduces the HIV-associated neuropathic pain state.


Novel chimeric virus-like particles vaccine displaying MERS-CoV receptor-binding domain induce specific humoral and cellular immune response in mice.

  • Chong Wang‎ et al.
  • Antiviral research‎
  • 2017‎

Middle East respiratory syndrome coronavirus (MERS-CoV) has continued spreading since its emergence in 2012 with a mortality rate of 35.6%, and is a potential pandemic threat. Prophylactics and therapies are urgently needed to address this public health problem. We report here the efficacy of a vaccine consisting of chimeric virus-like particles (VLP) expressing the receptor binding domain (RBD) of MERS-CoV. In this study, a fusion of the canine parvovirus (CPV) VP2 structural protein gene with the RBD of MERS-CoV can self-assemble into chimeric, spherical VLP (sVLP). sVLP retained certain parvovirus characteristics, such as the ability to agglutinate pig erythrocytes, and structural morphology similar to CPV virions. Immunization with sVLP induced RBD-specific humoral and cellular immune responses in mice. sVLP-specific antisera from these animals were able to prevent pseudotyped MERS-CoV entry into susceptible cells, with neutralizing antibody titers reaching 1: 320. IFN-γ, IL-4 and IL-2 secreting cells induced by the RBD were detected in the splenocytes of vaccinated mice by ELISpot. Furthermore, mice inoculated with sVLP or an adjuvanted sVLP vaccine elicited T-helper 1 (Th1) and T-helper 2 (Th2) cell-mediated immunity. Our study demonstrates that sVLP displaying the RBD of MERS-CoV are promising prophylactic candidates against MERS-CoV in a potential outbreak situation.


MERS-CoV virus-like particles produced in insect cells induce specific humoural and cellular imminity in rhesus macaques.

  • Chong Wang‎ et al.
  • Oncotarget‎
  • 2017‎

Middle East respiratory syndrome coronavirus (MERS-CoV) causes severe respiratory disease in humans with a case fatality rate of over 39%, and poses a considerable threat to public health. A lack of approved vaccine or drugs currently constitutes a roadblock in controlling disease outbreak and spread. In this study, we generated MERS-CoV VLPs using the baculovirus expression system. Electron microscopy and immunoelectron microscopy results demonstrate that MERS-CoV VLPs are structurally similar to the native virus. Rhesus macaques inoculated with MERS-CoV VLPs and Alum adjuvant induced virus-neutralizing antibodies titers up to 1:40 and induced specific IgG antibodies against the receptor binding domain (RBD), with endpoint titers reaching 1:1,280. MERS-CoV VLPs also elicited T-helper 1 cell (Th1)-mediated immunity, as measured by ELISpot. These data demonstrate that MERS-CoV VLPs have excellent immunogenicity in rhesus macaques, and represent a promising vaccine candidate.


Intranasal Immunization with Influenza Virus-Like Particles Containing Membrane-Anchored Cholera Toxin B or Ricin Toxin B Enhances Adaptive Immune Responses and Protection against an Antigenically Distinct Virus.

  • Xianliang Ji‎ et al.
  • Viruses‎
  • 2016‎

Vaccination is the most effective means to prevent influenza virus infection, although current approaches are associated with suboptimal efficacy. Here, we generated virus-like particles (VLPs) composed of the hemagglutinin (HA), neuraminidase (NA) and matrix protein (M1) of A/Changchun/01/2009 (H1N1) with or without either membrane-anchored cholera toxin B (CTB) or ricin toxin B (RTB) as molecular adjuvants. The intranasal immunization of mice with VLPs containing membrane-anchored CTB or RTB elicited stronger humoral and cellular immune responses when compared to mice immunized with VLPs alone. Administration of VLPs containing CTB or RTB significantly enhanced virus-specific systemic and mucosal antibody responses, hemagglutination inhibiting antibody titers, virus neutralizing antibody titers, and the frequency of virus-specific IFN-γ and IL-4 secreting splenocytes. VLPs with and without CTB or RTB conferred complete protection against lethal challenge with a mouse-adapted homologous virus. When challenged with an antigenically distinct H1N1 virus, all mice immunized with VLPs containing CTB or RTB survived whereas mice immunized with VLPs alone showed only partial protection (80% survival). Our results suggest that membrane-anchored CTB and RTB possess strong adjuvant properties when incorporated into an intranasally-delivered influenza VLP vaccine. Chimeric influenza VLPs containing CTB or RTB may represent promising vaccine candidates for improved immunological protection against homologous and antigenically distinct influenza viruses.


Reduction of voltage gated sodium channel protein in DRG by vector mediated miRNA reduces pain in rats with painful diabetic neuropathy.

  • Munmun Chattopadhyay‎ et al.
  • Molecular pain‎
  • 2012‎

Painful neuropathy is a common complication of diabetes. Previous studies have identified significant increases in the amount of voltage gated sodium channel isoforms Na(V)1.7 and Na(V)1.3 protein in the dorsal root ganglia (DRG) of rats with streptozotocin (STZ)-induced diabetes. We found that gene transfer-mediated release of the inhibitory neurotransmitters enkephalin or gamma amino butyric acid (GABA) from DRG neurons in diabetic animals reduced pain-related behaviors coincident with a reduction in Na(V)1.7 protein levels in DRG in vivo. To further evaluate the role of Na(V)α subunit levels in DRG in the pathogenesis of pain in diabetic neuropathy, we constructed a non-replicating herpes simplex virus (HSV)-based vector expressing a microRNA (miRNA) against Na(V)α subunits.


Comparison of intrathecal morphine with continuous patient-controlled epidural anesthesia versus intrathecal morphine alone for post-cesarean section analgesia: a randomized controlled trial.

  • Izumi Sato‎ et al.
  • BMC anesthesiology‎
  • 2020‎

Several neuraxial techniques have demonstrated effective post-cesarean section analgesia. According to previous reports, it is likely that patient-controlled epidural analgesia (PCEA) without opioids is inferior to intrathecal morphine (IM) alone for post-cesarean section analgesia. However, little is known whether adding PCEA to IM is effective or not. The aim of this study was to compare post-cesarean section analgesia between IM with PCEA and IM alone.


A Bivalent Human Adenovirus Type 5 Vaccine Expressing the Rabies Virus Glycoprotein and Canine Distemper Virus Hemagglutinin Protein Confers Protective Immunity in Mice and Foxes.

  • Lina Yan‎ et al.
  • Frontiers in microbiology‎
  • 2020‎

The development of a safe and efficient multivalent vaccine has great prospects for application. Both rabies virus (RABV) and canine distemper virus (CDV) are highly infectious antigens, causing lethal diseases in domestic dogs and other carnivores worldwide. In this study, a replication-deficient human adenovirus 5 (Ad5)-vectored vaccine, rAd5-G-H, expressing RABV glycoprotein (G) and CDV hemagglutinin (H) protein was constructed. The RABV G and CDV H protein of rAd5-G-H were expressed and confirmed in infected HEK-293 cells by indirect immunofluorescence assay. The rAd5-G-H retained a homogeneous icosahedral morphology similar to rAd5-GFP under an electron microscope. A single dose of 108 GFU of rAd5-G-H administered to mice by intramuscular injection elicited rapid and robust neutralizing antibodies against RABV and CDV. Flow cytometry assays indicated that the dendritic cells and B cells in inguinal lymph nodes were significantly recruited in rAd5-G-H-immunized mice in comparison with the mock and rAd5-GFP groups. rAd5-G-H also activated the Th1- and Th2-mediated cell immune responses against RABV and CDV in mice, which contributed to 100% survival of a lethal-dose RABV challenge without any clinical signs. In foxes, a single dose of 109 GFU of rAd5-G-H could elicit high levels of neutralizing antibodies against both RABV and CDV in comparison with the mock and rAd5-GFP groups. All foxes in the rAd5-GFP and mock groups died, while the foxes inoculated with rAd5-G-H all survived and showed no clinical signs of disease after being challenged with a lethal wild-type CDV strain. These results suggested that rAd5-G-H has great potential as a bivalent vaccine against rabies and canine distemper in highly susceptible dogs and wildlife animals.


Recombinant adeno-associated virus serotype 9 AAV-RABVG expressing a Rabies Virus G protein confers long-lasting immune responses in mice and non-human primates.

  • Chenjuan Shi‎ et al.
  • Emerging microbes & infections‎
  • 2022‎

Three or four intramuscular doses of the inactivated human rabies virus vaccines are needed for pre- or post-exposure prophylaxis in humans. This procedure has made a great contribution to prevent human rabies deaths, which bring huge economic burdens in developing countries. Herein, a recombinant adeno-associated virus serotype 9, AAV9-RABVG, harbouring a RABV G gene, was generated to serve as a single dose rabies vaccine candidate. The RABV G protein was stably expressed in the 293T cells infected with AAV9-RABVG. A single dose of 2 × 1011 v.p. of AAV9-RABVG induced robust and long-term positive seroconversions in BALB/c mice with a 100% survival from a lethal RABV challenge. In Cynomolgus Macaques vaccinated with a single dose of 1 × 1013 v.p. of AAV9-RABVG, the titres of rabies VNAs increased remarkably from 2 weeks after immunity, and maintained over 31.525 IU/ml at 52 weeks. More DCs were activated significantly for efficient antigen presentations of RABV G protein, and more B cells were activated to be responsible for antibody responses. Significantly more RABV G specific IFN-γ-secreting CD4+ and CD8+ T cells, and IL-4-secreting CD4+ T cells were activated, and significantly higher levels of IL-2, IFN-γ, IL-4, and IL-10 were secreted to aid immune responses. Overall, the AAV9-RABVG was a single dose rabies vaccine candidate with great promising by inducing robust, long-term humoral responses and both Th1 and Th2 cell-mediated immune responses in mice and non-human primates.


Carbonic anhydrase-8 regulates inflammatory pain by inhibiting the ITPR1-cytosolic free calcium pathway.

  • Gerald Z Zhuang‎ et al.
  • PloS one‎
  • 2015‎

Calcium dysregulation is causally linked with various forms of neuropathology including seizure disorders, multiple sclerosis, Huntington's disease, Alzheimer's, spinal cerebellar ataxia (SCA) and chronic pain. Carbonic anhydrase-8 (Car8) is an allosteric inhibitor of inositol trisphosphate receptor-1 (ITPR1), which regulates intracellular calcium release fundamental to critical cellular functions including neuronal excitability, neurite outgrowth, neurotransmitter release, mitochondrial energy production and cell fate. In this report we test the hypothesis that Car8 regulation of ITPR1 and cytoplasmic free calcium release is critical to nociception and pain behaviors. We show Car8 null mutant mice (MT) exhibit mechanical allodynia and thermal hyperalgesia. Dorsal root ganglia (DRG) from MT also demonstrate increased steady-state ITPR1 phosphorylation (pITPR1) and cytoplasmic free calcium release. Overexpression of Car8 wildtype protein in MT nociceptors complements Car8 deficiency, down regulates pITPR1 and abolishes thermal and mechanical hypersensitivity. We also show that Car8 nociceptor overexpression alleviates chronic inflammatory pain. Finally, inflammation results in downregulation of DRG Car8 that is associated with increased pITPR1 expression relative to ITPR1, suggesting a possible mechanism of acute hypersensitivity. Our findings indicate Car8 regulates the ITPR1-cytosolic free calcium pathway that is critical to nociception, inflammatory pain and possibly other neuropathological states. Car8 and ITPR1 represent new therapeutic targets for chronic pain.


Spinal CPEB-mtROS-CBP signaling pathway contributes to perineural HIV gp120 with ddC-related neuropathic pain in rats.

  • Takafumi Iida‎ et al.
  • Experimental neurology‎
  • 2016‎

Human immunodeficiency virus (HIV) patients treated with nucleoside reverse transcriptase inhibitors (NRTIs), have been known to develop neuropathic pain. While there has been a major shift away from some neurotoxic NRTIs in current antiretroviral therapy, a large number of HIV patients alive today have previously received them, and many have developed painful peripheral neuropathy. The exact mechanisms by which HIV with NRTIs contribute to the development of neuropathic pain are not known. Previous studies suggest that cytoplasmic polyadenylation element-binding protein (CPEB), reactive oxygen species (ROS), and cAMP-response element-binding protein (CREB)-binding protein (CBP), are involved in the neuroimmunological diseases including inflammatory/neuropathic pain. In this study, we investigated the role of CPEB, mitochondrial ROS (mtROS), or CBP in neuropathic pain induced by HIV envelope protein gp120 combined with antiretroviral drug. The application of recombinant gp120 into the sciatic nerve plus systemic ddC (one of NRTIs) induced mechanical allodynia. Knockdown of CPEB or CBP using intrathecal antisense oligodeoxynucleotide (AS-ODN) reduced mechanical allodynia. Intrathecal mitochondrial superoxide scavenger mito-tempol (Mito-T) increased mechanical withdrawal threshold. Knockdown of CPEB using intrathecal AS-ODN, reduced the up-regulated mitochondrial superoxide in the spinal dorsal horn in rats with gp120 combined with ddC. Intrathecal Mito-T lowered the increased expression of CBP in the spinal dorsal horn. Immunostaining studies showed that neuronal CPEB positive cells were co-localized with MitoSox positive profiles, and that MitoSox positive profiles were co-localized with neuronal CBP. Our studies suggest that neuronal CPEB-mtROS-CBP pathway in the spinal dorsal horn, plays an important role in the gp120/ddC-induced neuropathic pain in rats.


The Myeloid LSECtin Is a DAP12-Coupled Receptor That Is Crucial for Inflammatory Response Induced by Ebola Virus Glycoprotein.

  • Dianyuan Zhao‎ et al.
  • PLoS pathogens‎
  • 2016‎

Fatal Ebola virus infection is characterized by a systemic inflammatory response similar to septic shock. Ebola glycoprotein (GP) is involved in this process through activating dendritic cells (DCs) and macrophages. However, the mechanism is unclear. Here, we showed that LSECtin (also known as CLEC4G) plays an important role in GP-mediated inflammatory responses in human DCs. Anti-LSECtin mAb engagement induced TNF-α and IL-6 production in DCs, whereas silencing of LSECtin abrogated this effect. Intriguingly, as a pathogen-derived ligand, Ebola GP could trigger TNF-α and IL-6 release by DCs through LSECtin. Mechanistic investigations revealed that LSECtin initiated signaling via association with a 12-kDa DNAX-activating protein (DAP12) and induced Syk activation. Mutation of key tyrosines in the DAP12 immunoreceptor tyrosine-based activation motif abrogated LSECtin-mediated signaling. Furthermore, Syk inhibitors significantly reduced the GP-triggered cytokine production in DCs. Therefore, our results demonstrate that LSECtin is required for the GP-induced inflammatory response, providing new insights into the EBOV-mediated inflammatory response.


Isatis indigotica root polysaccharides as adjuvants for an inactivated rabies virus vaccine.

  • Weijiao Zhang‎ et al.
  • International journal of biological macromolecules‎
  • 2016‎

Adjuvants can enhance vaccine immunogenicity and induce long-term enhancement of immune responses. Thus, adjuvants are important for vaccine research. Polysaccharides isolated from select Chinese herbs have been demonstrated to possess various beneficial functions and excellent adjuvant abilities. In the present study, the polysaccharides IIP-A-1 and IIP-2 were isolated from Isatis indigotica root and compared with the common vaccine adjuvant aluminum hydroxide via intramuscular co-administration of inactivated rabies virus rCVS-11-G into mice. Blood was collected to determine virus neutralizing antibody (VNA) titers and B and T lymphocyte activation status. Inguinal lymph node samples were collected and used to measure B lymphocyte proliferation. Splenocytes were isolated, from which antigen-specific cellular immune responses were detected via ELISpot, ELISA and intracellular cytokine staining. The results revealed that both types of polysaccharides induce more rapid changes and higher VNA titers than aluminum hydroxide. Flow cytometry assays revealed that the polysaccharides activated more B lymphocytes in the lymph nodes and more B and T lymphocytes in the blood than aluminum hydroxide. Antigen-specific cellular immune responses showed that IIP-2 strongly induced T lymphocyte proliferation in the spleen and high levels of cytokine secretion from splenocytes, whereas aluminum hydroxide induced proliferation in only a small number of lymphocytes and the secretion of only small quantities of cytokines. Collectively, these data suggest that the polysaccharide IIP-2 exhibits excellent adjuvant activity and can enhance both cellular and humoral immunity.


TNFα is involved in neuropathic pain induced by nucleoside reverse transcriptase inhibitor in rats.

  • Xuexing Zheng‎ et al.
  • Brain, behavior, and immunity‎
  • 2011‎

In patients with HIV/AIDS, neuropathic pain is a common neurological complication. Infection with the HIV itself may lead to neuropathic pain, and painful symptoms are enhanced when patients are treated with nucleoside reverse transcriptase inhibitors (NRTIs). The mechanisms by which NRTIs contribute to the development of neuropathic pain are not known. In the current studies, we tested the role of TNFα in antiretroviral drug-induced neuropathic pain. We administered 2',3'-dideoxycytidine (ddC, one of the NRTIs) systemically to induce mechanical allodynia. We found that ddC induced overexpression of both mRNA and proteins of GFAP and TNFα in the spinal dorsal horn. TNFα was colocalized with GFAP in the spinal dorsal horn and with NeuN in the DRG. Knockdown of TNFα with siRNA blocked the mechanical allodynia induced by ddC. Intrathecal administration of glial inhibitor or recombinant TNF soluble receptor, reversed mechanical allodynia induced by ddC. These results suggest that TNFα is involved in NRTI-induced neuropathic pain.


Generation of recombinant rabies Virus CVS-11 expressing eGFP applied to the rapid virus neutralization test.

  • Xianghong Xue‎ et al.
  • Viruses‎
  • 2014‎

The determination of levels of rabies virus-neutralizing antibody (VNA) provides the foundation for the quantitative evaluation of immunity effects. The traditional fluorescent antibody virus neutralization test (FAVN) using a challenge virus standard (CVS)-11 strain as a detection antigen and staining infected cells with a fluorescein isothiocyanate (FITC)-labeled monoclonal antibody, is expensive and high-quality reagents are often difficult to obtain in developing countries. Indeed, it is essential to establish a rapid, economical, and specific rabies virus neutralization test (VNT). Here, we describe a recombinant virus rCVS-11-eGFP strain that stably expresses enhanced green fluorescent protein (eGFP) based on a reverse genetic system of the CVS-11 strain. Compared to the rCVS-11 strain, the rCVS-11-eGFP strain showed a similar growth property with passaging stability in vitro and pathogenicity in vivo. The rCVS-11-eGFP strain was utilized as a detection antigen to determine the levels of rabies VNAs in 23 human and 29 canine sera; this technique was termed the FAVN-eGFP method. The good reproducibility of FAVN-eGFP was tested with partial serum samples. Neutralization titers obtained from FAVN and FAVN-eGFP were not significantly different. The FAVN-eGFP method allows rapid economical, specific, and high-throughput assessment for the titration of rabies VNAs.


Effect of fluid loading with normal saline and 6% hydroxyethyl starch on stroke volume variability and left ventricular volume.

  • Hirotsugu Kanda‎ et al.
  • International journal of general medicine‎
  • 2015‎

The aim of this clinical trial was to investigate changes in stroke volume variability (SVV) and left ventricular end-diastolic volume (LVEDV) after a fluid bolus of crystalloid or colloid using real-time three-dimensional transesophageal echocardiography (3D-TEE) and the Vigileo-FloTrac™ system.


Assembly of pigeon circovirus-like particles using baculovirus expression system.

  • Weiwei Gai‎ et al.
  • Microbial pathogenesis‎
  • 2020‎

Pigeon circovirus (PiCV) is able to infect racing and meat pigeons of all ages and is a key factor that triggers young pigeon disease syndrome (YPDS). PiCV vaccine research has been impeded because PiCV cannot be grown or propagated in cell cultures. Virus-like particles (VLPs), which can be generated by a wide range of expression systems, have been shown to have outstanding immunogenicity and constitute promising vaccines against a wide range of pathogens. Cap protein, which contains neutralizing antibody epitopes, is the only capsid protein of PiCV. In this study, the baculovirus expression system was utilized to express the PiCV Cap protein, which was self-assembled into VLPs with a spherical morphology and diameters of 15-18 nm. Specific antibodies against the Cap protein were induced after BALB/c mice immunized intramuscularly (i.m.) with VLPs combined with adjuvant. Based on these findings, PiCV VLPs may be a promising candidate vaccine against PiCV.


DNA vaccine encoding Middle East respiratory syndrome coronavirus S1 protein induces protective immune responses in mice.

  • Hang Chi‎ et al.
  • Vaccine‎
  • 2017‎

The Middle East respiratory syndrome coronavirus (MERS-CoV), is an emerging pathogen that continues to cause outbreaks in the Arabian peninsula and in travelers from this region, raising the concern that a global pandemic could occur. Here, we show that a DNA vaccine encoding the first 725 amino acids (S1) of MERS-CoV spike (S) protein induces antigen-specific humoral and cellular immune responses in mice. With three immunizations, high titers of neutralizing antibodies (up to 1: 104) were generated without adjuvant. DNA vaccination with the MERS-CoV S1 gene markedly increased the frequencies of antigen-specific CD4+ and CD8+ T cells secreting IFN-γ and other cytokines. Both pcDNA3.1-S1 DNA vaccine immunization and passive transfer of immune serum from pcDNA3.1-S1 vaccinated mice protected Ad5-hDPP4-transduced mice from MERS-CoV challenge. These results demonstrate that a DNA vaccine encoding MERS-CoV S1 protein induces strong protective immune responses against MERS-CoV infection.


Autophagy is highly targeted among host comparative proteomes during infection with different virulent RABV strains.

  • Ling Li‎ et al.
  • Oncotarget‎
  • 2017‎

Rabies virus (RABV) is a neurotropic virus that causes serious disease in humans and animals worldwide. It has been reported that different RABV strains can result in divergent prognoses in animal model. To identify host factors that affect different infection processes, a kinetic analysis of host proteome alterations in mouse brains infected with different virulent RABV strains was performed using isobaric tags for a relative and absolute quantification (iTRAQ)-liquid chromatography-tandem mass spectrometry (LC-MS/MS) proteomics approach, and this analysis identified 147 differentially expressed proteins (DEPs) between the pathogenic challenge virus standard (CVS)-11 strain and the attenuated SRV9 strain. Bioinformatics analyses of these DEPs revealed that autophagy and several pathways associated with autophagy, such as mammalian target of rapamycin (mTOR) signaling, p70S6K signaling, nuclear factor erythroid 2-related factor 2 (NRF2)-mediated oxidative stress and superoxide radical degradation, were dysregulated. Validation of the proteomic data showed that attenuated SRV9 induced more autophagosome accumulation than CVS-11 in an in vitro model. Our findings provide new insights into the pathogenesis of RABV and encourage further studies on this topic.


Phosphorylated CCAAT/Enhancer Binding Protein β Contributes to Rat HIV-Related Neuropathic Pain: In Vitro and In Vivo Studies.

  • Hyun Yi‎ et al.
  • The Journal of neuroscience : the official journal of the Society for Neuroscience‎
  • 2018‎

Chronic pain is increasingly recognized as an important comorbidity of HIV-infected patients, however, the exact molecular mechanisms of HIV-related pain are still elusive. CCAAT/enhancer binding proteins (C/EBPs) are expressed in various tissues, including the CNS. C/EBPβ, one of the C/EBPs, is involved in the progression of HIV/AIDS, but the exact role of C/EBPβ and its upstream factors are not clear in HIV pain state. Here, we used a neuropathic pain model of perineural HIV envelope glycoprotein gp120 application onto the rat sciatic nerve to test the role of phosphorylated C/EBPβ (pC/EBPβ) and its upstream pathway in the spinal cord dorsal horn (SCDH). HIV gp120 induced overexpression of pC/EBPβ in the ipsilateral SCDH compared with contralateral SCDH. Inhibition of C/EBPβ using siRNA against C/EBPβ reduced mechanical allodynia. HIV gp120 also increased TNFα, TNFRI, mitochondrial superoxide (mtO2·-), and pCREB in the ipsilateral SCDH. ChIP-qPCR assay showed that pCREB enrichment on the C/EBPβ gene promoter regions in rats with gp120 was higher than that in sham rats. Intrathecal TNF soluble receptor I (functionally blocking TNFα bioactivity) or knockdown of TNFRI using antisense oligodeoxynucleotide against TNFRI reduced mechanical allodynia, and decreased mtO2·-, pCREB and pC/EBPβ. Intrathecal Mito-tempol (a mitochondria-targeted O2·-scavenger) reduced mechanical allodynia and decreased pCREB and pC/EBPβ. Knockdown of CREB with antisense oligodeoxynucleotide against CREB reduced mechanical allodynia and lowered pC/EBPβ. These results suggested that the pathway of TNFα/TNFRI-mtO2·--pCREB triggers pC/EBPβ in the HIV gp120-induced neuropathic pain state. Furthermore, we confirmed the pathway using both cultured neurons treated with recombinant TNFα in vitro and repeated intrathecal injection of recombinant TNFα in naive rats. This finding provides new insights in the understanding of the HIV neuropathic pain mechanisms and treatment.SIGNIFICANCE STATEMENT Painful HIV-associated sensory neuropathy is a neurological complication of HIV infection. Phosphorylated C/EBPβ (pC/EBPβ) influences AIDS progression, but it is still not clear about the exact role of pC/EBPβ and the detailed upstream factors of pC/EBPβ in HIV-related pain. In a neuropathic pain model of perineural HIV gp120 application onto the sciatic nerve, we found that pC/EBPβ was triggered by TNFα/TNFRI-mtO2·--pCREB signaling pathway. The pathway was confirmed by using cultured neurons treated with recombinant TNFα in vitro, and by repeated intrathecal injection of recombinant TNFα in naive rats. The present results revealed the functional significance of TNFα/TNFRI-mtO2·--pCREB-pC/EBPβ signaling in HIV neuropathic pain, and should help in the development of more specific treatments for neuropathic pain.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: