Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 441 papers

Decoding brain responses to pixelized images in the primary visual cortex: implications for visual cortical prostheses.

  • Bing-Bing Guo‎ et al.
  • Neural regeneration research‎
  • 2015‎

Visual cortical prostheses have the potential to restore partial vision. Still limited by the low-resolution visual percepts provided by visual cortical prostheses, implant wearers can currently only "see" pixelized images, and how to obtain the specific brain responses to different pixelized images in the primary visual cortex (the implant area) is still unknown. We conducted a functional magnetic resonance imaging experiment on normal human participants to investigate the brain activation patterns in response to 18 different pixelized images. There were 100 voxels in the brain activation pattern that were selected from the primary visual cortex, and voxel size was 4 mm × 4 mm × 4 mm. Multi-voxel pattern analysis was used to test if these 18 different brain activation patterns were specific. We chose a Linear Support Vector Machine (LSVM) as the classifier in this study. The results showed that the classification accuracies of different brain activation patterns were significantly above chance level, which suggests that the classifier can successfully distinguish the brain activation patterns. Our results suggest that the specific brain activation patterns to different pixelized images can be obtained in the primary visual cortex using a 4 mm × 4 mm × 4 mm voxel size and a 100-voxel pattern.


In-vivo absorption of pinocembrin-7-O-β-D-glucoside in rats and its in-vitro biotransformation.

  • Wei-Wei Guo‎ et al.
  • Scientific reports‎
  • 2016‎

Pinocembrin-7-O-β-D-glucoside (PCBG), a flavonoid isolated from Penthorum chinense Pursh., has significant liver-protecting effects. The pharmacokinetics of PCBG and its major metabolite pinocembrin (PCB) in rats were investigated in this study. A sensitive and accurate UPLC-MS/MS method was developed and validated for the simultaneous quantitative determination of PCBG and PCB in rat plasma after oral and intravenous administration of PCBG. After intravenous administration, PCBG was the main form in plasma. In contrast, after oral administration, the concentration of PCB was about 4-fold higher than that of PCBG, indicating that PCBG was metabolized to PCB. We also investigated the biotransformation of PCBG in vitro in order to understand whether the pH and the intestinal flora of gastrointestinal tract could affect the metabolism of PCBG. PCBG was incubated in rat plasma, liver homogenization, gastrointestial contents, liver microsomes (RLM) and hepatocytes in vitro. The data showed that PCB was quickly formed in the gastrointestinal incubation but PCBG was converted to PCB gradually in other incubations. The results indicated that the majority of PCBG was converted to its aglycone PCB in digestive system after oral administration, and PCB could be the active ingredient in the body.


Dietary Patterns are Associated with Helicobacter Pylori Infection in Chinese Adults: A Cross-Sectional Study.

  • Yang Xia‎ et al.
  • Scientific reports‎
  • 2016‎

Previous studies indicated that food consumption was associated with Helicobacter pylori infection, but no study has yet investigated the association between Helicobacter pylori infection and dietary patterns. The aim of this study was to evaluate the associations between Helicobacter pylori infection and dietary patterns in Tianjin, China. The final cross-sectional study population comprised 10407 participants. Dietary consumption of participants was assessed via food frequency questionnaire. Factor analysis was used to identify dietary patterns, and Helicobacter pylori infection status was diagnosis by H. pylori urease Immunogold Testing kit. Participants in the highest quartile of the high-carbohydrate/sweet pattern showed a multivariable-adjusted OR (95% CI) of 1.65 (1.27-2.17) for the prevalence of H. pylori infection compared with those in the lowest quartile. The multiple adjusted OR for scores of the extreme quartile of high-protein/cholesterol pattern was 0.75 (95% CI, 0.57-0.98). This study demonstrated that a diet rich in carbohydrates and sweets was positively associated with the prevalence of H. pylori infection; interestingly, a diet characterized by high intake of animal offal, animal blood, fish, seafood, and poultry was associated with a reduction of prevalence of H. pylori infection.


Chromosome fusions triggered by noncoding RNA.

  • John R Bracht‎ et al.
  • RNA biology‎
  • 2017‎

Chromosomal fusions are common in normal and cancer cells and can produce aberrant gene products that promote transformation. The mechanisms driving these fusions are poorly understood, but recurrent fusions are widespread. This suggests an underlying mechanism, and some authors have proposed a possible role for RNA in this process. The unicellular eukaryote Oxytricha trifallax displays an exorbitant capacity for natural genome editing, when it rewrites its germline genome to form a somatic epigenome. This developmental process provides a powerful model system to directly test the influence of small noncoding RNAs on chromosome fusion events during somatic differentiation. Here we show that small RNAs are capable of inducing chromosome fusions in 4 distinct cases (out of 4 tested), including one fusion of 3 chromosomes. We further show that these RNA-mediated chromosome fusions are heritable over multiple sexual generations and that transmission of the acquired fusion is associated with endogenous production of novel piRNA molecules that target the fused junction. We also demonstrate the capacity of a long noncoding RNA (lncRNA) to induce chromosome fusion of 2 distal germline loci. These results underscore the ability of short-lived, aberrant RNAs to act as drivers of chromosome fusion events that can be stably transmitted to future generations.


Discovery of Dual ETA/ETB Receptor Antagonists from Traditional Chinese Herbs through in Silico and in Vitro Screening.

  • Xing Wang‎ et al.
  • International journal of molecular sciences‎
  • 2016‎

Endothelin-1 receptors (ETAR and ETBR) act as a pivotal regulator in the biological effects of ET-1 and represent a potential drug target for the treatment of multiple cardiovascular diseases. The purpose of the study is to discover dual ETA/ETB receptor antagonists from traditional Chinese herbs. Ligand- and structure-based virtual screening was performed to screen an in-house database of traditional Chinese herbs, followed by a series of in vitro bioassay evaluation. Aristolochic acid A (AAA) was first confirmed to be a dual ETA/ETB receptor antagonist based intracellular calcium influx assay and impedance-based assay. Dose-response curves showed that AAA can block both ETAR and ETBR with IC50 of 7.91 and 7.40 μM, respectively. Target specificity and cytotoxicity bioassay proved that AAA is a selective dual ETA/ETB receptor antagonist and has no significant cytotoxicity on HEK293/ETAR and HEK293/ETBR cells within 24 h. It is a feasible and effective approach to discover bioactive compounds from traditional Chinese herbs using in silico screening combined with in vitro bioassay evaluation. The structural characteristic of AAA for its activity was especially interpreted, which could provide valuable reference for the further structural modification of AAA.


Hydroxytyrosol Protects against Myocardial Ischemia/Reperfusion Injury through a PI3K/Akt-Dependent Mechanism.

  • Ying-hao Pei‎ et al.
  • Mediators of inflammation‎
  • 2016‎

To investigate the effects and mechanisms of hydroxytyrosol (HT) during the pathogenesis of myocardial ischemia reperfusion (I/R) in rat hearts.


Role of cerebrospinal fluid-contacting nucleus in sodium sensing and sodium appetite.

  • Dan Xing‎ et al.
  • Physiology & behavior‎
  • 2015‎

The brainstem plays an important role in controlling sodium and water homeostasis. It is a major regulatory site for autonomic and motor functions. Moreover, it integrates cerebrospinal fluid (CSF) signals with neuronal and hormonal signals. Evidence suggests that the CSF-contacting nucleus (CSF-CN) transmits and integrates CSF signals, but, the definitive role of CSF-CN in sodium homeostasis is poorly understood. In this study, we used c-Fos as a marker of neuronal activity and causing colocalization of Nax channel and 5-HT. This proved that CSF-CN played a role in sensing the increase of CSF sodium level. Then, we determined the role of the CSF-contacting nucleus in increasing the sodium appetite of rats. So, we performed targeted lesion of the CSF-contacting nucleus in the brainstem using the cholera toxin subunit B-saporin (CB-SAP), a cytotoxin coupled to cholera toxin subunit B. The lesion of the CSF-CN showed decreased and degenerative neurons, while sodium appetite have increased and Fos immunocytochemistry detected neuronal activity in the lateral parabrachial nucleus (LPBN), but not in the subfornical organ (SFO) and organum vasculosum of the lamina terminalis (OVLT). These results indicate that the CSF-CN plays an important role in sensing CSF sodium level and satiating sodium appetite by influencing the LPBN but not SFO and OVLT. The Nax channel and 5-HT might be the molecular mechanisms through which contribute to sodium homeostasis.


The eukaryotic-type serine/threonine protein kinase Stk is required for biofilm formation and virulence in Staphylococcus epidermidis.

  • Qian Liu‎ et al.
  • PloS one‎
  • 2011‎

Serine/threonine kinases are involved in gene regulation and signal transduction in prokaryotes and eukaryotes. Here, we investigated the role of the serine/threonine kinase Stk in the opportunistic pathogen Staphylococcus epidermidis.


SIRT1 deacetylates SATB1 to facilitate MAR HS2-MAR ε interaction and promote ε-globin expression.

  • Zheng Xue‎ et al.
  • Nucleic acids research‎
  • 2012‎

The higher order chromatin structure has recently been revealed as a critical new layer of gene transcriptional control. Changes in higher order chromatin structures were shown to correlate with the availability of transcriptional factors and/or MAR (matrix attachment region) binding proteins, which tether genomic DNA to the nuclear matrix. How posttranslational modification to these protein organizers may affect higher order chromatin structure still pending experimental investigation. The type III histone deacetylase silent mating type information regulator 2, S. cerevisiae, homolog 1 (SIRT1) participates in many physiological processes through targeting both histone and transcriptional factors. We show that MAR binding protein SATB1, which mediates chromatin looping in cytokine, MHC-I and β-globin gene loci, as a new type of SIRT1 substrate. SIRT1 expression increased accompanying erythroid differentiation and the strengthening of β-globin cluster higher order chromatin structure, while knockdown of SIRT1 in erythroid k562 cells weakened the long-range interaction between two SATB1 binding sites in the β-globin locus, MAR(HS2) and MAR(ε). We also show that SIRT1 activity significantly affects ε-globin gene expression in a SATB1-dependent manner and that knockdown of SIRT1 largely blocks ε-globin gene activation during erythroid differentiation. Our work proposes that SIRT1 orchestrates changes in higher order chromatin structure during erythropoiesis, and reveals the dynamic higher order chromatin structure regulation at posttranslational modification level.


Ainsliadimer A selectively inhibits IKKα/β by covalently binding a conserved cysteine.

  • Ting Dong‎ et al.
  • Nature communications‎
  • 2015‎

Aberrant activation of NF-κB is associated with the development of cancer and autoimmune and inflammatory diseases. IKKs are well recognized as key regulators in the NF-κB pathway and therefore represent attractive targets for intervention with small molecule inhibitors. Herein, we report that a complex natural product ainsliadimer A is a potent inhibitor of the NF-κB pathway. Ainsliadimer A selectively binds to the conserved cysteine 46 residue of IKKα/β and suppresses their activities through an allosteric effect, leading to the inhibition of both canonical and non-canonical NF-κB pathways. Remarkably, ainsliadimer A induces cell death of various cancer cells and represses in vivo tumour growth and endotoxin-mediated inflammatory responses. Ainsliadimer A is thus a natural product targeting the cysteine 46 of IKKα/β to block NF-κB signalling. Therefore, it has great potential for use in the development of anticancer and anti-inflammatory therapies.


FAM83D activates the MEK/ERK signaling pathway and promotes cell proliferation in hepatocellular carcinoma.

  • Dong Wang‎ et al.
  • Biochemical and biophysical research communications‎
  • 2015‎

Publicly available microarray data suggests that the expression of FAM83D (Family with sequence similarity 83, member D) is elevated in a wide variety of tumor types, including hepatocellular carcinoma (HCC). However, its role in the pathogenesis of HCC has not been elucidated. Here, we showed that FAM83D was frequently up-regulated in HCC samples. Forced FAM83D expression in HCC cell lines significantly promoted their proliferation and colony formation while FAM83D knockdown resulted in the opposite effects. Mechanistic analyses indicated that FAM83D was able to activate the MEK/ERK signaling pathway and promote the entry into S phase of cell cycle progression. Taken together, these results demonstrate that FAM83D is a novel oncogene in HCC development and may constitute a potential therapeutic target in HCC.


Effect of Chronic Pioglitazone Treatment on Hepatic Gene Expression Profile in Obese C57BL/6J Mice.

  • Chunming Jia‎ et al.
  • International journal of molecular sciences‎
  • 2015‎

Pioglitazone, a selective ligand of peroxisome proliferator-activated receptor gamma (PPARγ), is an insulin sensitizer drug that is being used in a number of insulin-resistant conditions, including non-alcoholic fatty liver disease (NAFLD). However, there is a discrepancy between preclinical and clinical data in the literature and the benefits of pioglitazone treatment as well as the precise mechanism of action remain unclear. In the present study, we determined the effect of chronic pioglitazone treatment on hepatic gene expression profile in diet-induced obesity (DIO) C57BL/6J mice in order to understand the mechanisms of NAFLD induced by PPARγ agonists. DIO mice were treated with pioglitazone (25 mg/kg/day) for 38 days, the gene expression profile in liver was evaluated using Affymetrix Mouse GeneChip 1.0 ST array. Pioglitazone treatment resulted in exacerbated hepatic steatosis and increased hepatic triglyceride and free fatty acids concentrations, though significantly increased the glucose infusion rate in hyperinsulinemic-euglycemic clamp test. The differentially expressed genes in liver of pioglitazone treated vs. untreated mice include 260 upregulated and 86 downregulated genes. Gene Ontology based enrichment analysis suggests that inflammation response is transcriptionally downregulated, while lipid metabolism is transcriptionally upregulated. This may underlie the observed aggravating liver steatosis and ameliorated systemic insulin resistance in DIO mice.


Discovery of a Natural Syk Inhibitor from Chinese Medicine through a Docking-Based Virtual Screening and Biological Assay Study.

  • Xing Wang‎ et al.
  • Molecules (Basel, Switzerland)‎
  • 2018‎

Spleen tyrosine kinase (Syk) is a critical target protein for treating immunoreceptor signalling-mediated allergies. In this study, a virtual screening of an in-house Chinese medicine database followed by biological assays was carried out to identify novel Syk inhibitors. A molecular docking method was employed to screen for compounds with potential Syk inhibitory activity. Then, an in vitro kinase inhibition assay was performed to verify the Syk inhibitory activity of the virtual screening hits. Subsequently, a β-hexosaminidase release assay was conducted to evaluate the anti-mast cell degranulation activity of the active compounds. Finally, tanshinone I was confirmed as a Syk inhibitor (IC50 = 1.64 μM) and exhibited anti-mast cell degranulation activity in vitro (IC50 = 2.76 μM). Docking studies showed that Pro455, Gln462, Leu377, and Lys458 were key amino acid residues for Syk inhibitory activity. This study demonstrated that tanshinone I is a Syk inhibitor with mast cell degranulation inhibitory activity. Tanshinone I may be a potential lead compound for developing effective and safe Syk-inhibiting drugs.


After-effects of repetitive anodal transcranial direct current stimulation on learning and memory in a rat model of Alzheimer's disease.

  • Wen-Juan Yang‎ et al.
  • Neurobiology of learning and memory‎
  • 2019‎

Repetitive anodal transcranial direct current stimulation (tDCS) in a rat model of Alzheimer's disease (AD) has been shown to have distinct neuroprotective effects. Moreover, the effects of anodal tDCS not only occur during the stimulation but also persist after the stimulation has ended (after-effects). Here, the duration of the after-effects induced by repetitive anodal tDCS was investigated based on our previous studies. Adult male Sprague-Dawley rats were divided into three groups: a sham group, a β-amyloid (Aβ) group (AD group) and a stimulation group (ATD group). Aβ was injected into the bilateral hippocampi of the rats in the AD and ATD groups to produce the AD model. Rats in the ATD group underwent 10 sessions of anodal tDCS, and the after-effects of repetitive anodal tDCS were evaluated by behavioral and histological analyses. A Morris water maze (MWM) was utilized on a monthly basis to assess spatial learning and memory abilities. The ATD group showed shorter escape latencies and more platform region crossings than the AD group. Hippocampal choline acetyltransferase (ChAT) and glial fibrillary acidic protein (GFAP) immunohistochemical analyses were carried out after the last MWM assessment. The immunohistochemistry results showed notable differences among the groups, particularly between the AD and ATD groups. This study reveals that repetitive anodal tDCS can not only improve cognitive function and memory performance but also has long-term after-effects that persist for 2 months.


Digital Anatomy to Improve Screw Insertion Techniques for Plate-Screw Fixation of the Pubic Body.

  • Wenlong Li‎ et al.
  • BioMed research international‎
  • 2018‎

This study aims to investigate screw insertion sites on the pubic body and the safe screw insertion parameters of a plate-screw fixation system based on the premise of avoiding damage to the inguinal canal and disruption of the rectus abdominis at the pubic symphysis and pubic crest.


Discovery of a natural PI3Kδ inhibitor through virtual screening and biological assay study.

  • Jun-Fang Guo‎ et al.
  • Biochemical and biophysical research communications‎
  • 2019‎

Phosphoinositide-3-kinase-δ (PI3Kδ) is a key regulator in the process of IgE mediated mast cell degranulation, which directly induces allergic diseases, such as asthma. This study is aimed at discovery of natural PI3Kδ inhibitors from Chinese medicine and evaluating their anti-mast cell degranulation activity. A combined virtual screening based on 3D pharmacophore model and molecular docking was used to screen for bioactive ingredients directly targeting PI3Kδ. Then, an in vitro kinase inhibition assay was conducted to evaluate the PI3Kδ inhibitory activity of the virtual screening hits. Subsequently, a β-hexosaminidase release assay was performed to verify the anti-mast cell degranulation activity of the active compounds. Finally, ginkgoneolic acid was identified as a PI3Kδ inhibitor (IC50 = 2.49 μM) and exhibited anti-mast cell degranulation activity in vitro (IC50 = 2.40 μM). Docking studies showed that Glu826, Val827 and Val828 were key amino acid residues for PI3Kδ inhibitory activity. Ginkgoneolic acid may be a potential lead compound for developing effective and safe PI3Kδ-inhibiting drugs.


A novel peptide suppresses adipogenic differentiation through activation of the AMPK pathway.

  • Dan Shen‎ et al.
  • Biochemical and biophysical research communications‎
  • 2019‎

Obesity rates have risen rapidly over the past several decades and obesity is now a global public health challenge. The reduction of excessive adipogenesis is thought to be an effective intervention for obesity and obesity-related metabolic diseases such as type 2 diabetes. In this study, a novel peptide PDBSN was identified that functions to suppress adipogenesis. In both human preadipocytes and mouse adipose-derived stem cells (ADSCs), PDBSN exhibited a suppressive effect on the accumulation of lipids and the expression of genes as well as their corresponding proteins (CCAAT/enhancer binding protein (C/EBP)β, C/EBPα and nuclear receptor peroxisome proliferator-activated receptor γ (PPARγ)) relevant to adipogenic cell differentiation. Although adipogenesis decreased, the preadipocyte number and proliferation were not influenced by the PDBSN treatment. Apoptosis and the cell cycle were also determined to not have a role in the action of PDBSN. Mechanistically, the activity of the AMPK (adenosine 5'-monophosphate-activated protein kinase) pathway was markedly increased upon PDBSN treatment. Moreover, treatment of preadipocytes with compound C, a selective AMPK inhibitor, abolished the effect of PDBSN in anti-adipogenesis, suggesting that the function of PDBSN relied on the AMPK pathway. These results suggest an effective role for PDBSN in suppressing adipogenesis and show potential for anti-obesity drug discovery.


Immediate and persistent antidepressant-like effects of Chaihu-jia-Longgu-Muli-tang are associated with instantly up-regulated BDNF in the hippocampus of mice.

  • Xing Wang‎ et al.
  • Bioscience reports‎
  • 2019‎

Conventional antidepressants have a disadvantage in delayed onset of efficacy. Here, we aimed to evaluate the immediate and persistent antidepressant-like action of a classic herbal medicine Chaihu-jia-Longgu-Muli decoction (CLM) as well as the action of CLM on hippocampal brain-derived neurotrophic factor (BDNF) over time. CLM consists of Xiaochaihu decoction (XchD), Longgu-Muli (LM) and several other herbs. The contribution of constituent herbal formula XchD and other parts of CLM was also assessed. Following a single dose of CLM, tail suspension test (TST), forced swim test (FST), and novelty-suppressed feeding test (NSF) were performed. The antidepressant activity of XchD, its interaction with LM or remaining parts of CLM was also examined after a single administration. BDNF expression in the hippocampus was examined at 30 min and 24 hr post a single CLM. A single administration of half of clinical dose of CLM elicited antidepressant effects at TST 30 min post administration, and lasted for 72 hr. Furthermore, CLM also reduced the latency to eat in NSF test. A single proportional dose of XchD induced antidepressant effects at 30 min and lasted for 48 hr, whereas the effect lasted for 72 hr when combined with either LM or the remaining parts of CLM. BDNF expression increased at 30 min and persisted at least for 24 hr after a single dose of CLM. The results support that Chaihu-jia-Longgu-Muli decoction was capable to immediately and enduringly elicit antidepressant activity via enhancement of hippocampal BDNF expression, in which the constituent Xiaochaihu decoction played the primary role.


Oral mucosal mesenchymal stem cell‑derived exosomes: A potential therapeutic target in oral premalignant lesions.

  • Wenwen Li‎ et al.
  • International journal of oncology‎
  • 2019‎

Emerging evidence indicates that mesenchymal stem cells (MSCs) serve an indispensable role in the tumor microenvironment. However, whether MSCs participate in the development of oral carcinogenesis remains unclear. The present study isolated MSCs from clinical tissues and investigated the differences of MSCs derived from normal oral mucosa (N‑MSC), oral leukoplakia with dysplasia (LK‑MSC) and oral carcinoma (Ca‑MSC). The results revealed that the LK‑MSCs exhibited reduced proliferation and migration, compared with the N‑MSCs and Ca‑MSCs. Furthermore, it was demonstrated that the exosomes secreted by LK‑MSCs have significant roles in promoting proliferation, migration and invasion in vitro, which was similar to the Ca‑MSC‑derived exosomes. The promoting effect was also demonstrated in a 3D coculture model. When the secretion of exosomes was blocked, the promoting effect of LK‑MSCs was reversed. Based on a microarray analysis of MSC‑derived exosomes, microRNA‑8485 (miR‑8485) was identified to be ectopically expressed. The exosomal miR‑8485 was capable of promoting the proliferation, migration and invasion of tumor cells. Therefore, the present study highlights the significance of MSC‑derived exosomes and exosomal miR‑8485 in premalignant lesions and carcinogenesis. Intervention with the secretion of MSC‑derived‑exosomes may be an innovative strategy to retard the carcinogenesis.


Molecular Characteristics of Community-Associated Staphylococcus aureus Isolates From Pediatric Patients With Bloodstream Infections Between 2012 and 2017 in Shanghai, China.

  • Xing Wang‎ et al.
  • Frontiers in microbiology‎
  • 2018‎

Staphylococcus aureus is known as an invasive human pathogen, resulting in significant morbidity and mortality worldwide; however, information on community-associated S. aureus (CA-SA) from bloodstream infections (BSI) in children in China remains scarce. This study aimed to investigate the molecular characteristics of 78 CA-SA isolates recovered from pediatric patients with BSI between 2012 and 2017 in Shanghai. All isolates including 51 (65.4%) methicillin-susceptible S. aureus (MSSA) and 27 (34.6%) methicillin-resistant S. aureus (MRSA) isolates were characterized based on antimicrobial resistance, virulence genes, multilocus sequence typing (MLST), spa, and SCCmec typing. A total of 18 distinct sequence types (STs) and 44 spa types were identified. ST188 and ST7 were the predominant MSSA clones and ST59-MRSA-SCCmecIV/V was the most common MRSA clone. Spa t189 (9.0%, 7/78) was the most common spa type. SCCmec types IV and V were observed at frequencies of 59.3 and 40.7%, respectively. Notably, 40 (51.3%) S. aureus BSI strains were multidrug resistant (MDR), and these were mostly resistant to penicillin, erythromycin, and clindamycin. MRSA strains were associated with substantially higher rates of resistance to multiple antibiotics than MSSA strains. Fifty (64.1%, 50/78) isolates, including 19 (70.3%) MRSA isolates, harbored ≥ 10 tested virulence genes, as evaluated in this study. Ten (37.0%) MRSA isolates and four (7.8%) MSSA isolates harbored the gene encoding Panton-Valentine leukocidin (PVL). Virulence genes analysis showed diversity in different clones; the seb-sek-seq genes were present in all ST59 strains, whereas the seg-sei-sem-sen-seo genes were present in different clones including ST5, ST20, ST22, ST25, ST26, ST30, ST121, and ST487 strains. In conclusion, this study revealed that community-associated S. aureus strains from BSI in children demonstrated considerable genetic diversity, and identified major genotypes of CA-MRSA and CA-MSSA, with a high prevalence of CA-MRSA. Furthermore, major genotypes were frequently associated with specific antimicrobial resistance and toxin gene profiles. Understanding the molecular characteristics of those strains might provide further insights regarding the spread of BSI S. aureus among children between communities in China.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: