Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 6 papers out of 6 papers

Identification of natural compound carnosol as a novel TRPA1 receptor agonist.

  • Chenxi Zhai‎ et al.
  • Molecules (Basel, Switzerland)‎
  • 2014‎

The transient receptor potential ankyrin 1 (TRPA1) cation channel is one of the well-known targets for pain therapy. Herbal medicine is a rich source for new drugs and potentially useful therapeutic agents. To discover novel natural TRPA1 agonists, compounds isolated from Chinese herbs were screened using a cell-based calcium mobilization assay. Out of the 158 natural compounds derived from traditional Chinese herbal medicines, carnosol was identified as a novel agonist of TRPA1 with an EC50 value of 12.46 µM. And the agonistic effect of carnosol on TRPA1 could be blocked by A-967079, a selective TRPA1 antagonist. Furthermore, the specificity of carnosol was verified as it showed no significant effects on two other typical targets of TRP family member: TRPM8 and TRPV3. Carnosol exhibited anti-inflammatory and anti-nociceptive properties; the activation of TRPA1 might be responsible for the modulation of inflammatory nociceptive transmission. Collectively, our findings indicate that carnosol is a new anti-nociceptive agent targeting TRPA1 that can be used to explore further biological role in pain therapy.


Deoxyschizandrin Loaded Liposomes on the Suppression Lipid Accumulation in 3T3-L1 Adipocytes.

  • Xiaona Liu‎ et al.
  • Molecules (Basel, Switzerland)‎
  • 2018‎

Deoxyschizandrin (DS) is a bioactive benzocyclooctadiene lignan found in the fruit of Schisandra chinensis. However, poor bioavailability and non-specificity of DS frequently caused low therapeutic efficacy. In the present study, DS-liposome (DS-lipo) was implemented to enhance the hepatic targeting and inhibition effects on adipocyte differentiation in 3T3-L1 cells. The formulations enabled encapsulation of as much as 24.14% DS. The DS-lipo prepared was about 73.08 nm, as measured by laser light scattering (LLS) morphology. In the visual field of a scanning electron microscope (SEM), the liposomes were spherical with similar size and uniform dispersion. Fluorescence live imaging study exhibited hepatic targeting of liposomes in vivo. Furthermore, High-Content Analysis (HCS) imaging microassay analyses revealed DS-lipo and DS reduced cytoplasmic lipid droplet in 3T3-L1 adipocytes, with the IC50 value of 8.68 μM and 31.08 μM, respectively. The lipid droplet accumulation inhibition rate of 10 μM DS-lipo was above 90%, which was even superior to the effect of 30 μM DS solution. The current findings suggest that DS-lipo was a therapeutic strategy for alleviating lipid-associated diseases and nonalcoholic fatty liver disease (NAFLD).


Cardamonin, a Novel Antagonist of hTRPA1 Cation Channel, Reveals Therapeutic Mechanism of Pathological Pain.

  • Shifeng Wang‎ et al.
  • Molecules (Basel, Switzerland)‎
  • 2016‎

The increasing demand for safe and effective treatments of chronic pain has promoted the investigation of novel analgesic drugs. Some herbals have been known to be able to relieve pain, while the chemical basis and target involved in this process remained to be clarified. The current study aimed to find anti-nociceptive candidates targeting transient receptor potential ankyrin 1 (TRPA1), a receptor that implicates in hyperalgesia and neurogenic inflammation. In the current study, 156 chemicals were tested for blocking HEK293/TRPA1 ion channel by calcium-influx assay. Docking study was conducted to predict the binding modes of hit compound with TRPA1 using Discovery Studio. Cytotoxicity in HEK293 was conducted by Cell Titer-Glo assay. Additionally, cardiotoxicity was assessed via xCELLigence RTCA system. We uncovered that cardamonin selectively blocked TRPA1 activation while did not interact with TRPV1 nor TRPV4 channel. A concentration-dependent inhibitory effect was observed with IC50 of 454 nM. Docking analysis of cardamonin demonstrated a compatible interaction with A-967079-binding site of TRPA1. Meanwhile, cardamonin did not significantly reduce HEK293 cell viability, nor did it impair cardiomyocyte constriction. Our data suggest that cardamonin is a selective TRPA1 antagonist, providing novel insight into the target of its anti-nociceptive activity.


Transcriptome and Metabolite Profiling Reveal Novel Insights into Volatile Heterosis in the Tea Plant (Camellia Sinensis).

  • Yucheng Zheng‎ et al.
  • Molecules (Basel, Switzerland)‎
  • 2019‎

Tea aroma is a key indicator for evaluating tea quality. Although notable success in tea aroma improvement has been achieved with heterosis breeding technology, the molecular basis underlying heterosis remains largely unexplored. Thus, the present report studies the tea plant volatile heterosis using a high-throughput next-generation RNA-seq strategy and gas chromatography-mass spectrometry. Phenotypically, we found higher terpenoid volatile and green leaf volatile contents by gas chromatography-mass spectrometry in the F1 hybrids than in their parental lines. Volatile heterosis was obvious in both F1 hybrids. At the molecular level, the comparative transcriptomics analysis revealed that approximately 41% (9027 of 21,995) of the genes showed non-additive expression, whereas only 7.83% (1723 of 21,995) showed additive expression. Among the non-additive genes, 42.1% showed high parental dominance and 17.6% showed over-dominance. Among different expression genes with high parental dominance and over-dominance expression patterns, KEGG and GO analyses found that plant hormone signal transduction, tea plant physiological process related pathways and most pathways associated with tea tree volatiles were enriched. In addition, we identified multiple genes (CsDXS, CsAATC2, CsSPLA2, etc.) and transcription factors (CsMYB1, CsbHLH79, CsWRKY40, etc.) that played important roles in tea volatile heterosis. Based on transcriptome and metabolite profiling, we conclude that non-additive action plays a major role in tea volatile heterosis. Genes and transcription factors involved in tea volatiles showing over-dominance expression patterns can be considered candidate genes and provide novel clues for breeding high-volatile tea varieties.


Mono-PEGylation of Alpha-MMC and MAP30 from Momordica charantia L.: Production, Identification and Anti-Tumor Activity.

  • Yun Sun‎ et al.
  • Molecules (Basel, Switzerland)‎
  • 2016‎

PEGylation is a well-established and effective strategy to decrease immunogenicity, which can increase the stability and in vivo half-life time. However, the generation of multi-site modified products is inevitable due to the lysine chemistry, which will bring difficulties in subsequent research, such as purification and quantification. Site-specific modification by mPEG-succinimidyl carbonate (mPEG-SC) is a widely used method for N-terminal conjugation. In this study, we used it for site-directed modification on two ribosome-inactivating proteins (RIPs), alpha-momorcharin (α-MMC) and momordica anti-HIV protein (MAP30), from Momordica charantia L. According to the optimization of previous modification conditions, we compared Macro-Cap SP with SP-Sepharose FF chromatography for separating the final mPEGylated RIPs. Two kinds of methods both can obtain homogenous mPEGylated RIPs which were identified by sodium dodecylsulphate polyacrylamide gel electrophoresis (SDS-PAGE), isoelectric focusing electrophoresis (IEF), and matrix-assisted laser desorption ionization-time of flight/time of flight (MALDI-TOF/TOF) analysis. We also used iodine staining method to detect the amount of unmodified PEG. Furthermore, the inhibition activity of both mPEGylated and non-PEGylated RIPs against human lung adenocarcinoma epithelial A549 cells was detected. All of the results suggested that the mPEGylated α-MMC/MAP30 might be potentially developed as new anti-tumor drugs.


Anti-Inflammatory Effects of Aurantio-Obtusin from Seed of Cassia obtusifolia L. through Modulation of the NF-κB Pathway.

  • Jingyi Hou‎ et al.
  • Molecules (Basel, Switzerland)‎
  • 2018‎

Aurantio-obtusin, an anthraquinone compound, isolated from dried seeds of Cassia obtusifolia L. (syn. Senna obtusifolia; Fabaceae) and Cassia tora L. (syn. Senna tora). Although the biological activities of Semen Cassiae have been reported, the anti-inflammatory mechanism of aurantio-obtusin, its main compound, on RAW264.7 cells, remained unknown. We investigated the anti-inflammatory effect of aurantio-obtusin on lipopolysaccharide- (LPS)-induced RAW264.7 cells in vitro and elucidated the possible underlying molecular mechanisms. Nitric oxide production (NO) and prostaglandin E₂ (PGE₂) were measured by the Griess colorimetric method and enzyme-linked immunosorbent assay (ELISA), respectively. Protein expression levels of cyclooxygenase 2 (COX-2) were monitored by cell-based ELISA. Interleukin 6 (IL-6) and tumor necrosis factor-alpha (TNF-α) synthesis were analyzed using ELISA. The mRNA expression of nitric oxide synthase (iNOS), COX-2, and the critical pro-inflammatory cytokines (IL-6 and TNF-α) were detected by quantitative real-time PCR. Aurantio-obtusin significantly decreased the production of NO, PGE₂, and inhibited the protein expression of COX-2, TNF-α and IL-6, which were similar to those gene expression of iNOS, COX-2, TNF-α and IL-6 (p < 0.01). Consistent with the pro-inflammatory gene expression, the Aurantio-obtusin efficiently reduced the LPS-induced activation of nuclear factor-κB in RAW264.7 cells. These results suggested that aurantio-obtusin may function as a therapeutic agent and can be considered in the further development of treatments for a variety of inflammatory diseases. Further studies may provide scientific evidence for the use of aurantio-obstusin as a new therapeutic agent for inflammation-related diseases.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: