Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 4 papers out of 4 papers

Identification of Gene Signatures and Expression Patterns During Epithelial-to-Mesenchymal Transition From Single-Cell Expression Atlas.

  • Xiangtian Yu‎ et al.
  • Frontiers in genetics‎
  • 2020‎

Cancer, which refers to abnormal cell proliferative diseases with systematic pathogenic potential, is one of the leading threats to human health. The final causes for patients' deaths are usually cancer recurrence, metastasis, and drug resistance against continuing therapy. Epithelial-to-mesenchymal transition (EMT), which is the transformation of tumor cells (TCs), is a prerequisite for pathogenic cancer recurrence, metastasis, and drug resistance. Conventional biomarkers can only define and recognize large tissues with obvious EMT markers but cannot accurately monitor detailed EMT processes. In this study, a systematic workflow was established integrating effective feature selection, multiple machine learning models [Random forest (RF), Support vector machine (SVM)], rule learning, and functional enrichment analyses to find new biomarkers and their functional implications for distinguishing single-cell isolated TCs with unique epithelial or mesenchymal markers using public single-cell expression profiling. Our discovered signatures may provide an effective and precise transcriptomic reference to monitor EMT progression at the single-cell level and contribute to the exploration of detailed tumorigenesis mechanisms during EMT.


Predicting Human Protein Subcellular Locations by Using a Combination of Network and Function Features.

  • Lei Chen‎ et al.
  • Frontiers in genetics‎
  • 2021‎

Given the limitation of technologies, the subcellular localizations of proteins are difficult to identify. Predicting the subcellular localization and the intercellular distribution patterns of proteins in accordance with their specific biological roles, including validated functions, relationships with other proteins, and even their specific sequence characteristics, is necessary. The computational prediction of protein subcellular localizations can be performed on the basis of the sequence and the functional characteristics. In this study, the protein-protein interaction network, functional annotation of proteins and a group of direct proteins with known subcellular localization were used to construct models. To build efficient models, several powerful machine learning algorithms, including two feature selection methods, four classification algorithms, were employed. Some key proteins and functional terms were discovered, which may provide important contributions for determining protein subcellular locations. Furthermore, some quantitative rules were established to identify the potential subcellular localizations of proteins. As the first prediction model that uses direct protein annotation information (i.e., functional features) and STRING-based protein-protein interaction network (i.e., network features), our computational model can help promote the development of predictive technologies on subcellular localizations and provide a new approach for exploring the protein subcellular localization patterns and their potential biological importance.


Copy Number Variation Pattern for Discriminating MACROD2 States of Colorectal Cancer Subtypes.

  • ShiQi Zhang‎ et al.
  • Frontiers in bioengineering and biotechnology‎
  • 2019‎

Copy number variation (CNV) is a common structural variation pattern of DNA, and it features a higher mutation rate than single-nucleotide polymorphisms (SNPs) and affects a larger fragment of genomes. CNV is related with the genesis of complex diseases and can thus be used as a strategy to identify novel cancer-predisposing markers or mechanisms. In particular, the frequent deletions of mono-ADP-ribosylhydrolase 2 (MACROD2) locus in human colorectal cancer (CRC) alters DNA repair and the sensitivity to DNA damage and results in chromosomal instability. The relationship between CNV and cancer has not been explained. In this study, on the basis of the genome variation profiling by the SNP array from 651 CRC primary tumors, we computationally analyzed the CNV data to select crucial SNP sites with the most relevance to three different states of MACROD2 (heterozygous deletion, homozygous deletion, and normal state), suggesting that these CNVs may play functional roles in CRC tumorigenesis. Our study can shed new insights into the genesis of cancer based on CNV, providing reference for clinical diagnosis, and treatment prognosis of CRC.


Identification of Microbiota Biomarkers With Orthologous Gene Annotation for Type 2 Diabetes.

  • Yu-Hang Zhang‎ et al.
  • Frontiers in microbiology‎
  • 2021‎

Type 2 diabetes (T2D) is a systematic chronic metabolic condition with abnormal sugar metabolism dysfunction, and its complications are the most harmful to human beings and may be life-threatening after long-term durations. Considering the high incidence and severity at late stage, researchers have been focusing on the identification of specific biomarkers and potential drug targets for T2D at the genomic, epigenomic, and transcriptomic levels. Microbes participate in the pathogenesis of multiple metabolic diseases including diabetes. However, the related studies are still non-systematic and lack the functional exploration on identified microbes. To fill this gap between gut microbiome and diabetes study, we first introduced eggNOG database and KEGG ORTHOLOGY (KO) database for orthologous (protein/gene) annotation of microbiota. Two datasets with these annotations were employed, which were analyzed by multiple machine-learning models for identifying significant microbiota biomarkers of T2D. The powerful feature selection method, Max-Relevance and Min-Redundancy (mRMR), was first applied to the datasets, resulting in a feature list for each dataset. Then, the list was fed into the incremental feature selection (IFS), incorporating support vector machine (SVM) as the classification algorithm, to extract essential annotations and build efficient classifiers. This study not only revealed potential pathological factors for diabetes at the microbiome level but also provided us new candidates for drug development against diabetes.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: