Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 53 papers

Cul4 E3 ubiquitin ligase regulates ovarian cancer drug resistance by targeting the antiapoptotic protein BIRC3.

  • Xiaoyan Hu‎ et al.
  • Cell death & disease‎
  • 2019‎

CRL4, a well-defined E3 ligase, has been reported to be upregulated and is proposed to be a potential drug target in ovarian cancers. However, the biological functions of CRL4 and the underlying mechanism regulating cancer chemoresistance are still largely elusive. Here, we show that CRL4 is considerably increased in cisplatin-resistant ovarian cancer cells, and CRL4 knockdown with shRNAs is able to reverse cisplatin-resistance of ovarian cancer cells. Moreover, CRL4 knockdown markedly inhibits the expression of BIRC3, one of the inhibitors of apoptosis proteins (IAPs). Besides, lower expression level of BIRC3 is associated with better prognosis of ovarian cancer patients, and BIRC3 knockdown in ovarian cancer cells can recover their sensitivity to cisplatin. More importantly, we demonstrate that CRL4 regulates BIRC3 expression by mediating the STAT3, but not the PI3K pathway. Therefore, our results identified CRL4 as an important factor in ovarian cancer chemoresistance, suggesting that CRL4 and BIRC3 may serve as novel therapeutic targets for relapsed patients after treatment with cisplatin and its derivative to overcome the bottle neck of ovarian cancer chemoresistance.


TIFA suppresses hepatocellular carcinoma progression via MALT1-dependent and -independent signaling pathways.

  • Wenzhi Shen‎ et al.
  • Signal transduction and targeted therapy‎
  • 2016‎

TIFA, also called T2BP, was first identified using yeast two-hybrid screening. Our previous work showed that TIFA suppresses hepatocellular carcinoma (HCC) progression via apoptosis and cell cycle arrest. However, the mechanism by which this TIFA suppression occurs remains unclear. Here we demonstrated that TIFA-induced apoptosis demonstrates two distinct time patterns (i.e., at 48 h and >7 days) when TIFA reconstitution occurs. Moreover, we found that MALT1 (a competitor of TIFA) plays a crucial role in short-duration TIFA reconstitution. In this regard, MALT1 silencing with shRNA markedly enhances TIFA-induced apoptosis in vitro and in vivo. In addition, TIFA overexpression triggers JNK and p38 activation in long-duration TIFA reconstitution through TRAF6 binding. In particular, JNK activation leads to TIFA-induced apoptosis while p38 activation governs TIFA-induced cell cycle arrest by p53-p21 signaling in vitro and in vivo. Our data suggest a novel mechanism by which TIFA suppresses HCC progression via both MALT1-dependent and MALT1-independent signaling pathways. This may provide insights into a novel targets where HCC progression may be vulnerable to clinical treatment.


SKLB188 inhibits the growth of head and neck squamous cell carcinoma by suppressing EGFR signalling.

  • Mansoureh Barzegar‎ et al.
  • British journal of cancer‎
  • 2017‎

Overexpression of epidermal growth factor receptor (EGFR) occurs in approximately 90% of head and neck squamous cell carcinoma (HNSCC), and is correlated with poor prognosis. Thus, targeting EGFR is a promising strategy for treatment of HNSCC. Several small molecule EGFR inhibitors have been tested in clinical trials for treatment of HNSCC, but none of them are more effective than the current chemotherapeutic drugs. Thus, it is urgently needed to develop novel EGFR inhibitors for HNSCC treatment.


Liposomal Nanoparticles Carrying anti-IL6R Antibody to the Tumour Microenvironment Inhibit Metastasis in Two Molecular Subtypes of Breast Cancer Mouse Models.

  • Chunlei Guo‎ et al.
  • Theranostics‎
  • 2017‎

Tumour microenvironment (TME) contributes significantly towards potentiating the stemness and metastasis properties of cancer cells. IL6-Stat3 is one of the important cell signaling pathways in mediating the communication between tumour and immune cells. Here, we have systematically developed a novel anti-CD44 antibody-mediated liposomal nanoparticle delivery system loaded with anti-IL6R antibody, which could specifically target the TME of CD44+ breast cancer cells in different mouse models for triple negative and luminal breast cancer. This nanoparticle had an enhanced and specific tumour targeting efficacy with dramatic anti-tumour metastasis effects in syngeneic BALB/c mice bearing 4T1 cells as was in the syngeneic MMTV-PyMT mice. It inhibited IL6R-Stat3 signaling and moderated the TME, characterized by the reduced expression of genes encoding Stat3, Sox2, VEGFA, MMP-9 and CD206 in the breast tissues. Furthermore, this nanoparticle reduced the subgroups of Sox2+ and CD206+ cells in the lung metastatic foci, demonstrating its inhibitory effect on the lung metastatic niche for breast cancer stem cells. Taken together, the CD44 targeted liposomal nanoparticles encapsulating anti-IL6R antibody achieved a significant effect to inhibit the metastasis of breast cancer in different molecular subtypes of breast cancer mouse models. Our results shed light on the application of nanoparticle mediated cancer immune-therapy through targeting TME.


Design, synthesis, and biological evaluation of polo-like kinase 1/eukaryotic elongation factor 2 kinase (PLK1/EEF2K) dual inhibitors for regulating breast cancer cells apoptosis and autophagy.

  • Zhaoping Pan‎ et al.
  • European journal of medicinal chemistry‎
  • 2018‎

Both PLK1 and EEF2K are serine⁄threonine kinases that play important roles in the proliferation and programmed cell death of various types of cancer. They are highly expressed in breast cancer tissues. Based on the multiple-complexes generated pharmacophore models of PLK1 and homology models of EEF2K, the integrated virtual screening is performed to discover novel PLK1/EEF2K dual inhibitors. The top ten hit compounds are selected and tested in vitro, and five of them display PLK1 and EEF2K inhibition in vitro. Based on the docking modes of the most potent hit compound, a series of derivatives are synthesized, characterized and biological assayed on the PLK1, EEF2K as well as breast cancer cell proliferation models. Compound 18i with satisfied inhibitory potency are shifted to molecular mechanism studies contained molecular dynamics simulations, cell cycles, apoptosis and autophagy assays. Our results suggested that these novel PLK1/EEF2K dual inhibitors can be used as lead compounds for further development breast cancer chemotherapy.


Ligand recognition and allosteric regulation of DRD1-Gs signaling complexes.

  • Peng Xiao‎ et al.
  • Cell‎
  • 2021‎

Dopamine receptors, including D1- and D2-like receptors, are important therapeutic targets in a variety of neurological syndromes, as well as cardiovascular and kidney diseases. Here, we present five cryoelectron microscopy (cryo-EM) structures of the dopamine D1 receptor (DRD1) coupled to Gs heterotrimer in complex with three catechol-based agonists, a non-catechol agonist, and a positive allosteric modulator for endogenous dopamine. These structures revealed that a polar interaction network is essential for catecholamine-like agonist recognition, whereas specific motifs in the extended binding pocket were responsible for discriminating D1- from D2-like receptors. Moreover, allosteric binding at a distinct inner surface pocket improved the activity of DRD1 by stabilizing endogenous dopamine interaction at the orthosteric site. DRD1-Gs interface revealed key features that serve as determinants for G protein coupling. Together, our study provides a structural understanding of the ligand recognition, allosteric regulation, and G protein coupling mechanisms of DRD1.


Structural and Functional Insights into an Archaeal Lipid Synthase.

  • Sixue Ren‎ et al.
  • Cell reports‎
  • 2020‎

The UbiA superfamily of intramembrane prenyltransferases catalyzes an isoprenyl transfer reaction in the biosynthesis of lipophilic compounds involved in cellular physiological processes. Digeranylgeranylglyceryl phosphate (DGGGP) synthase (DGGGPase) generates unique membrane core lipids for the formation of the ether bond between the glycerol moiety and the alkyl chains in archaea and has been confirmed to be a member of the UbiA superfamily. Here, the crystal structure is reported to exhibit nine transmembrane helices along with a large lateral opening covered by a cytosolic cap domain and a unique substrate-binding central cavity. Notably, the lipid-bound states of this enzyme demonstrate that the putative substrate-binding pocket is occupied by the lipidic molecules used for crystallization, indicating the binding mode of hydrophobic substrates. Collectively, these structural and functional studies provide not only an understanding of lipid biosynthesis by substrate-specific lipid-modifying enzymes but also insights into the mechanisms of lipid membrane remodeling and adaptation.


Structure of the human gonadotropin-releasing hormone receptor GnRH1R reveals an unusual ligand binding mode.

  • Wei Yan‎ et al.
  • Nature communications‎
  • 2020‎

Gonadotrophin-releasing hormone (GnRH), also known as luteinizing hormone-releasing hormone, is the main regulator of the reproductive system, acting on gonadotropic cells by binding to the GnRH1 receptor (GnRH1R). The GnRH-GnRH1R system is a promising therapeutic target for maintaining reproductive function; to date, a number of ligands targeting GnRH1R for disease treatment are available on the market. Here, we report the crystal structure of GnRH1R bound to the small-molecule drug elagolix at 2.8 Å resolution. The structure reveals an interesting N-terminus that could co-occupy the enlarged orthosteric binding site together with elagolix. The unusual ligand binding mode was further investigated by structural analyses, functional assays and molecular docking studies. On the other hand, because of the unique characteristic of lacking a cytoplasmic C-terminal helix, GnRH1R exhibits different microswitch structural features from other class A GPCRs. In summary, this study provides insight into the ligand binding mode of GnRH1R and offers an atomic framework for rational drug design.


Icariin Treatment Rescues Diabetes Induced Bone Loss via Scavenging ROS and Activating Primary Cilia/Gli2/Osteocalcin Signaling Pathway.

  • Jie Liu‎ et al.
  • Cells‎
  • 2022‎

Diabetes-associated bone complications lead to fragile bone mechanical strength and osteoporosis, aggravating the disease burden of patients. Advanced evidence shows that chronic hyperglycemia and metabolic intermediates, such as inflammatory factor, reactive oxygen species (ROS), and advanced glycation end products (AGEs), are regarded as dominant hazardous factors of bone complications, whereas the pathophysiological mechanisms are complex and controversial. By establishing a diabetic Sprague-Dawley (SD) rat model and diabetic bone loss cell model in vitro, we confirmed that diabetes impaired primary cilia and led to bone loss, while adding Icariin (ICA) could relieve the inhibitions. Mechanistically, ICA could scavenge ROS to maintain the mitochondrial and primary cilia homeostasis of osteoblasts. Intact primary cilia acted as anchoring and modifying sites of Gli2, thereby activating the primary cilia/Gli2/osteocalcin signaling pathway to promote osteoblast differentiation. All results suggest that ICA has potential as a therapeutic drug targeting bone loss induced by diabetes.


HDAC inhibitors improve CRISPR-Cas9 mediated prime editing and base editing.

  • Nan Liu‎ et al.
  • Molecular therapy. Nucleic acids‎
  • 2022‎

Recent advances in CRISPR-Cas9 techniques, especially the discovery of base and prime editing, have significantly improved our ability to make precise changes in the genome. We hypothesized that modulating certain endogenous pathway cells could improve the action of those editing tools in mammalian cells. We established a reporter system in which a small fragment was integrated into the genome by prime editing (PE). With this system, we screened an in-house small-molecule library and identified a group of histone deacetylase inhibitors (HDACi) increasing prime editing. We also found that HDACi increased the efficiency of both cytosine base editing (CBE) and adenine base editing (ABE). Moreover, HDACi increased the purity of cytosine base editor products, which was accompanied by an upregulation of the acetylation of uracil DNA glycosylase (UNG) and UNG inhibitor (UGI) and an enhancement of their interaction. In summary, our work demonstrated that HDACi improves Cas9-mediated prime editing and base editing.


Loss of PRMT7 reprograms glycine metabolism to selectively eradicate leukemia stem cells in CML.

  • Chang Liu‎ et al.
  • Cell metabolism‎
  • 2022‎

Our group has reported previously on the role of various members of the protein arginine methyltransferase (PRMT) family, which are involved in epigenetic regulation, in the progression of leukemia. Here, we explored the role of PRMT7, given its unique function within the PRMT family, in the maintenance of leukemia stem cells (LSCs) in chronic myeloid leukemia (CML). Genetic loss of Prmt7, and the development and testing of a small-molecule specific inhibitor of PRMT7, showed that targeting PRMT7 delayed leukemia development and impaired self-renewal of LSCs in a CML mouse model and in primary CML CD34+ cells from humans without affecting normal hematopoiesis. Mechanistically, loss of PRMT7 resulted in reduced expressions of glycine decarboxylase, leading to the reprograming of glycine metabolism to generate methylglyoxal, which is detrimental to LSCs. These findings link histone arginine methylation with glycine metabolism, while suggesting PRMT7 as a potential therapeutic target for the eradication of LSCs in CML.


Jumonji domain-containing 6 (JMJD6) identified as a potential therapeutic target in ovarian cancer.

  • Heng Zheng‎ et al.
  • Signal transduction and targeted therapy‎
  • 2019‎

Jumonji domain-containing 6 (JMJD6) is a candidate gene associated with tumorigenesis, and JMJD6 overexpression predicts poor differentiation and unfavorable survival in some cancers. However, there are no studies reporting the expression of JMJD6 in ovarian cancer, and no JMJD6 inhibitors have been developed and applied to targeted cancer therapy research. In the present study, we found that the high expression of JMJD6 in ovarian cancer was correlated with poor prognosis in ovarian cancer. A potential inhibitor (SKLB325) was designed based on the crystal structure of the jmjC domain of JMJD6. This molecule significantly suppressed proliferation and induced apoptosis in a dose-dependent manner in SKOV3 cell lines as detected by CCK-8 cell proliferation assays and flow cytometry. A Matrigel endothelial tube formation assay showed that SKLB325 inhibited capillary tube organization and migration in HUVECs in vitro. We also observed that JMJD6 colocalized with p53 protein in the nucleus, with mRNA and protein expression of p53 as well as its downstream effectors significantly increasing both in vitro and in intraperitoneal tumor tissues treated with SKLB325. In addition, SKLB325 significantly reduced the intraperitoneal tumor weight and markedly prolonged the survival of tumor-bearing mice. Taken together, our findings suggest that JMJD6 may be a marker of poor prognosis in ovarian cancer and that SKLB325 may be a potential candidate drug for the treatment of ovarian cancer.


Structure-activity relationship studies of phenothiazine derivatives as a new class of ferroptosis inhibitors together with the therapeutic effect in an ischemic stroke model.

  • Wei Yang‎ et al.
  • European journal of medicinal chemistry‎
  • 2021‎

Ferroptosis is a new type of programmed cell death discovered recently and has been demonstrated to be involved in a number of human diseases such as ischemic stroke. Ferroptosis inhibitors are expected to have potential to treat these diseases. Herein, we report the identification of promethazine derivatives as a new type of ferroptosis inhibitors. Structure-activity relationship (SAR) analyses led to the discovery of the most potent compound 2-(1-(4-(4-methylpiperazin-1-yl)phenyl)ethyl)-10H-phenothiazine (51), which showed an EC50 (half maximal effective concentration) value of 0.0005 μM in the erastin-induced HT1080 cell ferroptosis model. In the MCAO (middle cerebral artery occlusion) ischemic stroke model, 51 presented an excellent therapeutic effect. This compound also displayed favorable pharmacokinetic properties, in particular, a good ability to permeate the blood-brain barrier. Overall, 51 could be a promising lead compound for the treatment of ferroptosis related diseases and deserves further investigations.


An Epigenetic Mechanism Underlying Chromosome 17p Deletion-Driven Tumorigenesis.

  • Mei Chen‎ et al.
  • Cancer discovery‎
  • 2021‎

Chromosome copy-number variations are a hallmark of cancer. Among them, the prevalent chromosome 17p deletions are associated with poor prognosis and can promote tumorigenesis more than TP53 loss. Here, we use multiple functional genetic strategies and identify a new 17p tumor suppressor gene (TSG), plant homeodomain finger protein 23 (PHF23). Its deficiency impairs B-cell differentiation and promotes immature B-lymphoblastic malignancy. Mechanistically, we demonstrate that PHF23, an H3K4me3 reader, directly binds the SIN3-HDAC complex through its N-terminus and represses its deacetylation activity on H3K27ac. Thus, the PHF23-SIN3-HDAC (PSH) complex coordinates these two major active histone markers for the activation of downstream TSGs and differentiation-related genes. Furthermore, dysregulation of the PSH complex is essential for the development and maintenance of PHF23-deficient and 17p-deleted tumors. Hence, our study reveals a novel epigenetic regulatory mechanism that contributes to the pathology of 17p-deleted cancers and suggests a susceptibility in this disease. SIGNIFICANCE: We identify PHF23, encoding an H3K4me3 reader, as a new TSG on chromosome 17p, which is frequently deleted in human cancers. Mechanistically, PHF23 forms a previously unreported histone-modifying complex, the PSH complex, which regulates gene activation through a synergistic link between H3K4me3 and H3K27ac.This article is highlighted in the In This Issue feature, p. 1.


Discovery of a novel and potent inhibitor with differential species-specific effects against NLRP3 and AIM2 inflammasome-dependent pyroptosis.

  • Yan Jiao‎ et al.
  • European journal of medicinal chemistry‎
  • 2022‎

The NLRP3 inflammasome, which regulated a proinflammatory programmed cell death form termed pyroptosis, is involved in the pathological process of various human diseases, such as multiple sclerosis, type 2 diabetes, and gout. Thus, compounds inhibiting activation of the NLRP3 inflammasome can be promising treatments for these diseases. In this study, we conducted a phenotypic screening against NLRP3-dependent pyroptosis and discovered the hit compound 1, which showed moderate antipyroptotic activity. Chemistry efforts to improve potency of 1 resulted in a novel compound 59 (J114), which exhibited a half-maximal inhibitory concentration (IC50) of 0.077 ± 0.008 μM against cell pyroptosis. Interestingly, unlike all pyroptosis inhibitors currently reported, the activity of J114 showed significant differences in human- and mouse-derived cells. The IC50 of J114-mediated inhibition of IL-1β secretion by human THP-1 macrophages was 0.098 μM, which was nearly 150-fold and 500-fold more potent than that of J774A.1 (14.62 μM) and bone marrow-derived macrophages (BMDMs) (48.98 μM), respectively. Further studies showed that J114 displayed remarkable inhibitory activity against NLRP3- and AIM2-but not NLRC4-dependent activation of caspase-1 and the release of IL-1β in human THP-1 macrophages. Mechanistically, J114 disturbed the interaction of NLRP3 or AIM2 with the adaptor protein ASC and inhibited ASC oligomerization. Overall, our study identified a unique molecule that inhibits NLRP3 and AIM2 inflammasome activation and has species differences, which is worthy of further research to understand the differential regulation of the NLRP3 and AIM2 inflammasomes in humans and mice.


KMT2C deficiency promotes small cell lung cancer metastasis through DNMT3A-mediated epigenetic reprogramming.

  • Feifei Na‎ et al.
  • Nature cancer‎
  • 2022‎

Small cell lung cancer (SCLC) is notorious for its early and frequent metastases, which contribute to it as a recalcitrant malignancy. To understand the molecular mechanisms underlying SCLC metastasis, we generated SCLC mouse models with orthotopically transplanted genome-edited lung organoids and performed multiomics analyses. We found that a deficiency of KMT2C, a histone H3 lysine 4 methyltransferase frequently mutated in extensive-stage SCLC, promoted multiple-organ metastases in mice. Metastatic and KMT2C-deficient SCLC displayed both histone and DNA hypomethylation. Mechanistically, KMT2C directly regulated the expression of DNMT3A, a de novo DNA methyltransferase, through histone methylation. Forced DNMT3A expression restrained metastasis of KMT2C-deficient SCLC through repressing metastasis-promoting MEIS/HOX genes. Further, S-(5'-adenosyl)-L-methionine, the common cofactor of histone and DNA methyltransferases, inhibited SCLC metastasis. Thus, our study revealed a concerted epigenetic reprogramming of KMT2C- and DNMT3A-mediated histone and DNA hypomethylation underlying SCLC metastasis, which suggested a potential epigenetic therapeutic vulnerability.


Identification of triazolopyridine derivatives as a new class of AhR agonists and evaluation of anti-psoriasis effect in a mouse model.

  • Chenyu Tian‎ et al.
  • European journal of medicinal chemistry‎
  • 2022‎

The aryl hydrocarbon receptor (AhR), a ligand-dependent transcription factor, can regulate the immune balance of Th17/22 and Treg cells, which plays an important role in the development and maintenance of the skin barrier. We herein report the discovery of triazolopyridine derivatives as a new class of AhR agonists. Structure-activity relationship analyses led to the identification of the most active compound, 6-bromo-2-(4-bromophenyl)-[1,2,4]triazolo[1,5-a]pyridine (12a), with an EC50 (50% effective concentration) value of 0.03 nM. Compound 12a could induce rapid nuclear enrichment of AhR, trigger the transcription of downstream genes and promote skin barrier repair. Topical or oral administration of 12a could significantly alleviate imiquimod (IMQ)-induced psoriasis-like skin lesion. Considering the excellent in vivo anti-psoriasis activity as well as good pharmacokinetic properties, 12a could be a promising lead compound for drug discovery against psoriasis, and deserving further investigation.


A New Type of Endometrial Cancer Models in Mice Revealing the Functional Roles of Genetic Drivers and Exploring their Susceptibilities.

  • Jingyao Chen‎ et al.
  • Advanced science (Weinheim, Baden-Wurttemberg, Germany)‎
  • 2023‎

Endometrial cancer (EC) is the most common female reproductive tract cancer and its incidence has been continuously increasing in recent years. The underlying mechanisms of EC tumorigenesis remain unclear, and efficient target therapies are lacking, for both of which feasible endometrial cancer animal models are essential but currently limited. Here, an organoid and genome editing-based strategy to generate primary, orthotopic, and driver-defined ECs in mice is reported. These models faithfully recapitulate the molecular and pathohistological characteristics of human diseases. The authors names these models and similar models for other cancers as organoid-initiated precision cancer models (OPCMs). Importantly, this approach can conveniently introduce any driver mutation or a combination of driver mutations. Using these models,it is shown that the mutations in Pik3ca and Pik3r1 cooperate with Pten loss to promote endometrial adenocarcinoma in mice. In contrast, the Kras G12D mutati led to endometrial squamous cell carcinoma. Then, tumor organoids are derived from these mouse EC models and performed high-throughput drug screening and validation. The results reveal distinct vulnerabilities of ECs with different mutations. Taken together, this study develops a multiplexing approach to model EC in mice and demonstrates its value for understanding the pathology of and exploring the potential treatments for this malignancy.


Discovery of 12O-A Novel Oral Multi-Kinase Inhibitor for the Treatment of Solid Tumor.

  • Yan Fan‎ et al.
  • Molecules (Basel, Switzerland)‎
  • 2020‎

A novel series of pyrimidine-benzotriazole derivatives have been synthesized and evaluated for their anticancer activity against human solid tumor cell lines. The most promising molecule 12O was identified for its excellent antiproliferative activities, especially against the SiHa cell line with IC50 value as 0.009 μM. Kinase inhibition assay assessed 12O was a potential multi-kinase inhibitor, which possessed potent inhibitory activities against cyclin-dependent kinases (CDKs) and fms-like tyrosine kinase (FLT) with IC50 values in the nanomolar range. Molecular docking studies illustrated that the introduction of triazole moiety in 12O was critical for CDKs inhibition. In addition, 12O inhibited cancer cell proliferation, colony-formation, and cell cycle progression and provoked apoptotic death in vitro. In an SiHa xenograft mouse model, a once-daily dose of compound 12O at 20 mg/kg significantly suppressed the tumor growth without obvious toxicity. Taken together, 12O provided valuable guide for further structural optimization for CDKs and FLT inhibitors.


Discovery of selective BPTF bromodomain inhibitors by screening and structure-based optimization.

  • Liang Xiong‎ et al.
  • Biochemical and biophysical research communications‎
  • 2021‎

Bromodomain and PHD finger containing transcription factor (BPTF) is a multidomain protein that regulates the transcription of chromatin and is related to many cancers. Herein, we report the screening-based discovery of Cpd1, a compound with micromolar affinity to the BPTF bromodomain. Through structure-guided optimization, we synthesized a variety of new inhibitors. Among these compounds, Cpd8 and Cpd10 were highly potent and selective inhibitors, with KD values of 428 nM and 655 nM in ITC assays, respectively. The high activity was explained by the cocrystal structure of Cpd8 in complex with the BPTF bromodomain protein. Cpd8 and Cpd10 were able to stabilize the BPTF bromodomain protein in cells in a cellular thermal shift assay (CETSA). Cpd8 downregulated c-MYC expression in A549 cells. All experiments prove that these two compounds are potential BPTF inhibitors.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: