Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 3 papers out of 3 papers

Protopanaxadiol alleviates obesity in high-fat diet-fed mice via activation of energy-sensing neuron in the paraventricular nucleus of hypothalamus.

  • Chuhe Liu‎ et al.
  • Biochemical and biophysical research communications‎
  • 2019‎

Obesity is one of the most important health problems worldwide. Panax ginseng has been reported to exert anti-obesity effect. However, the active constituents and the underlying mechanism remained uncertain. This study uncovered the anti-obesity effect of protopanaxadiol (PPD) and its potential mechanism. To investigate the anti-obesity effect of PPD, high-fat diet induced obesity (DIO) C57BL/6 mice were treated with PPD by both intraperitoneal injection (i.p.) and oral administration. Body weight and food intake were recorded. Energy expenditure was measured by CLAMS metabolic cages. For mechanism study, C-Fos in the hypothalamus of the mice was stained following the intracerebroventricular (i.c.v.) injection of PPD. Our results showed that with both injection and feeding, PPD reduced body weight, inhibited food intake, increased energy expenditure and improved liver damage in DIO mice. Mechanistically, i.c.v. injection of PPD inhibited feeding and increased C-Fos expression in paraventricular nucleus of the hypothalamus (PVH). The results suggest that PPD may reduce body weight of DIO mice via the activation of PVH neurons and PPD is a potential therapeutic candidate for the treatment of obesity.


Coptisine protects cardiomyocyte against hypoxia/reoxygenation-induced damage via inhibition of autophagy.

  • Yahui Wang‎ et al.
  • Biochemical and biophysical research communications‎
  • 2017‎

Coptisine is a natural occurring isoquinoline alkaloid isolated from the traditional Chinese medicinal herb Rhizoma coptidis. Coptisine has been reported to have protective effects on reperfusion injury in cardiomyocytes, however, the underlying mechanism remains uncertain. Here, we used a hypoxia/reoxygenation (H/R)-treated H9c2 cell model to study the protective effects of coptisine on cardiomyocyte. The results showed that NaS2O4 induced hypoxia/reoxygenation model increased apoptosis and up-regulated autophagy marker LC3-II and cleaved Caspase-3, Beclin1 and Sirt1 levels. Coptisine treatment increased cell survival, inhibited apoptosis, and reduced the protein level of LC3-II, cleaved Caspase-3, Beclin1 and Sirt1. Further, we showed that coptisine combined with chloroquine (CQ), the inhibitor of autolysosome, reduced LC3-II, suggesting that coptisine may inhibit autophagosome formation than induction of autolysosome in the autophagy events. Our results indicate that coptisine may protect cardiomyocyte damage by H/R through suppressing autophagy. Overall, our study provides a new mechanism for the treatment of coptisine on H/R-induced cardiomyocyte damage and death.


Identification of isotschimgine as a novel farnesoid X receptor agonist with potency for the treatment of obesity in mice.

  • Yin Li‎ et al.
  • Biochemical and biophysical research communications‎
  • 2020‎

Obesity and its associated non-alcoholic fatty liver disease (NAFLD) have become epidemic medical problems worldwide; however, the current available therapeutic options are limited. Farnesoid X receptor (FXR) has recently emerged as an attractive target for obesity treatment. Here we demonstrate that isotschimgine (ITG), a constituent in genus Ferula, as a novel FXR agonist with anti-obesity and anti-hepatic steatosis effects. The results showed that ITG activated the FXR transactivity and bound with the ligand binding dormain (LBD) of FXR with gene reporter assays and AlphaScreen assays. In high-fat diet-induced obese (DIO) mice, ITG lowered body weight and fat mass, improved insulin resistance and hepatic steatosis. Mechanistic studies showed that ITG altered the expression levels of FXR downstream genes, lipid synthesis and energy metabolism genes in the liver of mice. Our findings suggest that ITG is a novel FXR agonist and may be a potential therapeutic choice for obesity associated with NAFLD.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: