Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 704 papers

Telocytes accompanying cardiomyocyte in primary culture: two- and three-dimensional culture environment.

  • Jin Zhou‎ et al.
  • Journal of cellular and molecular medicine‎
  • 2010‎

Recently, the presence of telocytes was demonstrated in human and mammalian tissues and organs (digestive and extra-digestive organs, genitourinary organs, heart, placenta, lungs, pleura, striated muscle). Noteworthy, telocytes seem to play a significant role in the normal function and regeneration of myocardium. By cultures of telocytes in two- and three-dimensional environment we aimed to study the typical morphological features as well as functionality of telocytes, which will provide important support to understand their in vivo roles. Neonatal rat cardiomyocytes were isolated and cultured as seeding cells in vitro in two-dimensional environment. Furthermore, engineered myocardium tissue was constructed from isolated cells in three-dimensional collagen/Matrigel scaffolds. The identification of telocytes was performed by using histological and immunohistochemical methods. The results showed that typical telocytes are distributed among cardiomyocytes, connecting them by long telopodes. Telocytes have a typical fusiform cell body with two or three long moniliform telopodes, as main characteristics. The vital methylene blue staining showed the existence of telocytes in primary culture. Immunohistochemistry demonstrated that some c-kit or CD34 immuno-positive cells in engineered heart tissue had the morphology of telocytes, with a typical fusiform cell body and long moniliform telopodes. Also, a significant number of vimentin+ telocytes were present within engineered heart tissue. We suggest that the model of three-dimensional engineered heart tissue could be useful for the ongoing research on the functional relationships of telocytes with cardiomyocytes. Because the heart has the necessary potential of changing the muscle and non-muscle cells during the lifetime, telocytes might play an active role in the heart regeneration process. Moreover, telocytes might be a useful tool for cardiac tissue engineering.


An apoptosis targeted stimulus with nanosecond pulsed electric fields (nsPEFs) in E4 squamous cell carcinoma.

  • Wei Ren‎ et al.
  • Apoptosis : an international journal on programmed cell death‎
  • 2011‎

Stimuli directed towards activation of apoptosis mechanisms are an attractive approach to eliminate evasion of apoptosis, a ubiquitous cancer hallmark. In these in vitro studies, kinetics and electric field thresholds for several apoptosis characteristics are defined in E4 squamous carcinoma cells (SCC) exposed to ten 300 ns pulses with increasing electric fields. Cell death was >95% at the highest electric field and coincident with phosphatidylserine externalization, caspase and calpain activation in the presence and absence of cytochrome c release, decreases in Bid and mitochondria membrane potential (Δψm) without apparent changes reactive oxygen species levels or in Bcl2 and Bclxl levels. Bid cleavage was caspase-dependent (55-60%) and calcium-dependent (40-45%). Intracellular calcium as an intrinsic mechanism and extracellular calcium as an extrinsic mechanism were responsible for about 30 and 70% of calcium dependence for Bid cleavage, respectively. The results reveal electric field-mediated cell death induction and progression, activating pro-apoptotic-like mechanisms and affecting plasma membrane and intracellular functions, primarily through extrinsic-like pathways with smaller contributions from intrinsic-like pathways. Nanosecond second pulsed electric fields trigger heterogeneous cell death mechanisms in E4 SCC populations to delete them, with caspase-associated cell death as a predominant, but not an unaccompanied event.


Engineered heart tissue graft derived from somatic cell nuclear transferred embryonic stem cells improve myocardial performance in infarcted rat heart.

  • Shuanghong Lü‎ et al.
  • Journal of cellular and molecular medicine‎
  • 2010‎

The concept of regenerating diseased myocardium by implanting engineered heart tissue (EHT) is intriguing. Yet it was limited by immune rejection and difficulties to be generated at a size with contractile properties. Somatic cell nuclear transfer is proposed as a practical strategy for generating autologous histocompatible stem (nuclear transferred embryonic stem [NT-ES]) cells to treat diseases. Nevertheless, it is controversial as NT-ES cells may pose risks in their therapeutic application. EHT from NT-ES cell-derived cardiomyocytes was generated through a series of improved techniques in a self-made mould to keep the EHTs from contraction and provide static stretch simultaneously. After 7 days of static and mechanical stretching, respectively, the EHTs were implanted to the infarcted rat heart. Four weeks after transplantation, the suitability of EHT in heart muscle repair after myocardial infarction was evaluated by histological examination, echocardiography and multielectrode array measurement. The results showed that large (thickness/diameter, 2-4 mm/10 mm) spontaneously contracting EHTs was generated successfully. The EHTs, which were derived from NT-ES cells, inte grated and electrically coupled to host myocardium and exerted beneficial effects on the left ventricular function of infarcted rat heart. No teratoma formation was observed in the rat heart implanted with EHTs for 4 weeks. NT-ES cells can be used as a source of seeding cells for cardiac tissue engineering. Large contractile EHT grafts can be constructed in vitro with the ability to survive after implantation and improve myocardial performance of infarcted rat hearts.


Magnetic nanoparticle clusters for photothermal therapy with near-infrared irradiation.

  • Shun Shen‎ et al.
  • Biomaterials‎
  • 2015‎

In this study, the photothermal effect of magnetic nanoparticle clusters was firstly reported for the photothermal ablation of tumors both in vitro in cellular systems but also in vivo study. Compared with individual magnetic Fe3O4 nanoparticles (NPs), clustered Fe3O4 NPs can result in a significant increase in the near-infrared (NIR) absorption. Upon NIR irradiation at 808 nm, clustered Fe3O4 NPs inducing higher temperature were more cytotoxic against A549 cells than individual Fe3O4 NPs. We then performed in vivo photothermal therapy (PTT) studies and observed a promising tumor treatment. Compared with PBS and individual magnetic Fe3O4 NPs by NIR irradiation, the clustered Fe3O4 NPs treatment showed a higher therapeutic efficacy. The treatment effects of clustered Fe3O4 NPs with different time of NIR illumination were also evaluated. The result indicated that a sustained high temperature generated by NIR laser with long irradiation time was more effective in killing tumor cells. Furthermore, histological analysis of H&E staining and TUNEL immunohistological assay were further employed for antitumor efficacy assessment of PTT against A549 tumors.


Assessing the effects of an educational program for the prevention of work-related musculoskeletal disorders among school teachers.

  • Jian Shuai‎ et al.
  • BMC public health‎
  • 2014‎

Musculoskeletal disorders represent one of the most common and most costly occupational health problems in both developed and developing countries. The aim of this study was to assess the effect of occupational health education and ergonomic training on awareness, attitude and behavior of work-related musculoskeletal disorders among teachers.


Differential modulations of KCNQ1 by auxiliary proteins KCNE1 and KCNE2.

  • Pan Li‎ et al.
  • Scientific reports‎
  • 2014‎

KCNQ1 channels play vital roles in cardiovascular, gastric and other systems. The conductance and dynamics of KCNQ1 could be modulated by different single transmembrane helical auxiliary proteins (such as KCNE1, KCNE2 and others). In this study, detail KCNQ1 function modulations by different regions of KCNE1 or KCNE2 were examined using combinational methods of electrophysiology, immunofluorescence, solution NMR and related backbone flexibility analysis. In the presence of KCNE2 N-terminus, decreased surface expression and consequent low activities of KCNQ1 were observed. The transmembrane domains (TMDs) of KCNE1 and KCNE2 were illustrated to associate with the KCNQ1 channel in different modes: Ile64 in KCNE2-TMD interacting with Phe340 and Phe275 in KCNQ1, while two pairs of interacting residues (Phe340-Thr58 and Ala244-Tyr65) in the KCNQ1/KCNE1 complex. The KCNE1 C-terminus could modulate gating property of KCNQ1, whereas KCNE2 C-terminus had only minimal influences on KCNQ1. All of the results demonstrated different KCNQ1 function modulations by different regions of the two auxiliary proteins.


Sumoylation modulates 20-hydroxyecdysone signaling by maintaining USP protein levels in Drosophila.

  • Jiawan Wang‎ et al.
  • Insect biochemistry and molecular biology‎
  • 2014‎

The nuclear receptor complex for the insect steroid hormone, 20-hydroxyecdysone (20E), is a heterodimer of EcR and USP. It has been shown that Drosophila EcR and USP can be sumoylated in mammalian cells, but it is unknown whether EcR-USP sumoylation naturally occurs in Drosophila. In Drosophila cells, USP, but not EcR, was sumoylated by Smt3, the only Drosophila SUMO protein. The presence of EcR enhanced USP sumoylation, which is further enhanced by 20E treatment. In addition to the Lys20 sumoylation site, five potential acceptor lysine residues in USP were predicted and verified. Mutation of the USP sumoylation sites or reduction of smt3 expression by RNAi attenuated 20E-induced reporter activity. Moreover, in the salivary glands, reducing smt3 expression by RNAi decreased 20E-induced reporter activity, gene expression, and autolysosome formation. Importantly, at least partially, the smt3 RNAi-mediated reduction in 20E signaling resulted from decreased protein levels of USP. In conclusion, sumoylation modulates 20E signaling by maintaining USP protein levels in Drosophila.


Novel nanometer scaffolds regulate the biological behaviors of neural stem cells.

  • Jihui Zhou‎ et al.
  • Neural regeneration research‎
  • 2013‎

Ideal tissue-engineered scaffold materials regulate proliferation, apoptosis and differentiation of cells seeded on them by regulating gene expression. In this study, aligned and randomly oriented collagen nanofiber scaffolds were prepared using electronic spinning technology. Their diameters and appearance reached the standards of tissue-engineered nanometer scaffolds. The nanofiber scaffolds were characterized by a high swelling ratio, high porosity and good mechanical properties. The proliferation of spinal cord-derived neural stem cells on novel nanofiber scaffolds was obviously enhanced. The proportions of cells in the S and G2/M phases noticeably increased. Moreover, the proliferation rate of neural stem cells on the aligned collagen nanofiber scaffolds was high. The expression levels of cyclin D1 and cyclin-dependent kinase 2 were increased. Bcl-2 expression was significantly increased, but Bax and caspase-3 gene expressions were obviously decreased. There was no significant difference in the differentiation of neural stem cells into neurons on aligned and randomly oriented collagen nanofiber scaffolds. These results indicate that novel nanofiber scaffolds could promote the proliferation of spinal cord-derived neural stem cells and inhibit apoptosis without inducing differentiation. Nanofiber scaffolds regulate apoptosis and proliferation in neural stem cells by altering gene expression.


The stem cell adjuvant with Exendin-4 repairs the heart after myocardial infarction via STAT3 activation.

  • Jianfeng Liu‎ et al.
  • Journal of cellular and molecular medicine‎
  • 2014‎

The poor survival of cells in ischaemic myocardium is a major obstacle for stem cell therapy. Exendin-4 holds the potential of cardioprotective effect based on its pleiotropic activity. This study investigated whether Exendin-4 in conjunction with adipose-derived stem cells (ADSCs) could improve the stem cell survival and contribute to myocardial repairs after infarction. Myocardial infarction (MI) was induced by the left anterior descending artery ligation in adult male Sprague-Dawley rats. ADSCs carrying double-fusion reporter gene [firefly luciferase and monomeric red fluorescent protein (fluc-mRFP)] were quickly injected into border zone of MI in rats treated with or without Exendin-4. Exendin-4 enhanced the survival of transplanted ADSCs, as demonstrated by the longitudinal in vivo bioluminescence imaging. Moreover, ADSCs adjuvant with Exendin-4 decreased oxidative stress, apoptosis and fibrosis. They also improved myocardial viability and cardiac function and increased the differentiation rates of ADSCs into cardiomyocytes and vascular smooth muscle cells in vivo. Then, ADSCs were exposed to hydrogen peroxide/serum deprivation (H(2)O(2)/SD) to mimic the ischaemic environment in vitro. Results showed that Exendin-4 decreased the apoptosis and enhanced the paracrine effect of ADSCs. In addition, Exendin-4 activated signal transducers and activators of transcription 3 (STAT3) through the phosphorylation of Akt and ERK1/2. Furthermore, Exendin-4 increased the anti-apoptotic protein Bcl-2, but decreased the pro-apoptotic protein Bax of ADSCs. In conclusion, Exendin-4 could improve the survival and therapeutic efficacy of transplanted ADSCs through STAT3 activation via the phosphorylation of Akt and ERK1/2. This study suggests the potential application of Exendin-4 for stem cell-based heart regeneration.


A self-assembling nanomedicine of conjugated linoleic acid-paclitaxel conjugate (CLA-PTX) with higher drug loading and carrier-free characteristic.

  • Ting Zhong‎ et al.
  • Scientific reports‎
  • 2016‎

The main objective of this study was to demonstrate the proof-of-principle for the hypothesis that conjugated linoleic acid-paclitaxel conjugate (CLA-PTX), a novel fatty acid modified anti-cancer drug conjugate, could self-assemble forming nanoparticles. The results indicated that a novel self-assembling nanomedicine, CLA-PTX@PEG NPs (about 105 nm), with Cremophor EL (CrEL)-free and organic solvent-free characteristics, was prepared by a simple precipitation method. Being the ratio of CLA-PTX:DSPE-PEG was only 1:0.1 (w/w), the higher drug loading CLA-PTX@PEG NPs (about 90%) possessed carrier-free characteristic. The stability results indicated that CLA-PTX@PEG NPs could be stored for at least 9 months. The safety of CLA-PTX@PEG NPs was demonstrated by the MTD results. The anti-tumor activity and cellular uptake were also confirmed in the in vitro experiments. The lower crystallinity, polarity and solubility of CLA-PTX compared with that of paclitaxel (PTX) might be the possible reason for CLA-PTX self-assembling forming nanoparticles, indicating a relationship between PTX modification and nanoparticles self-assembly. Overall, the data presented here confirm that this drug self-delivery strategy based on self-assembly of a CLA-PTX conjugate may offer a new way to prepare nanomedicine products for cancer therapy involving the relationship between anticancer drug modification and self-assembly into nanoparticles.


Accurate De Novo Prediction of Protein Contact Map by Ultra-Deep Learning Model.

  • Sheng Wang‎ et al.
  • PLoS computational biology‎
  • 2017‎

Protein contacts contain key information for the understanding of protein structure and function and thus, contact prediction from sequence is an important problem. Recently exciting progress has been made on this problem, but the predicted contacts for proteins without many sequence homologs is still of low quality and not very useful for de novo structure prediction.


Effects of morphine withdrawal on the membrane properties of medium spiny neurons in the nucleus accumbens shell.

  • Xiaobo Wu‎ et al.
  • Brain research bulletin‎
  • 2013‎

Medium spiny neurons (MSNs) in the nucleus accumbens (NAc) undergo persistent alterations in their biological and physiological characteristics upon exposure to drugs of abuse. Previous studies demonstrated that the biochemical, morphological, and intrinsic physiological properties of MSNs are heterogeneous and provided new insights into the physiological and molecular roles of individual MSNs in addictive behaviors. However, it remains unclear whether MSNs in the NAc shell (NAcSh), an important region for mediating behavioral sensitization, are electrophysiologically heterogeneous and how such heterogeneity is relevant to neuroadaptation associated with drug addiction. Here, the membrane properties, i.e., the intrinsic excitability and spike adaptation, of MSNs in the NAcSh from saline- or morphine-treated rats were investigated in vitro by whole-cell recording. In saline-treated rats, three distinct cell types were identified by their membrane properties: type I neurons showed high levels of intrinsic excitability and rapid spike adaptation; type II neurons showed moderate levels of intrinsic excitability and relatively slow spike frequency adaptation; type III neurons showed low levels of intrinsic excitability and putative strong spike adaptation. MSNs in rats undergoing withdrawal from chronic morphine treatment (10-14 days after the last injection) also exhibited the typical firing behaviors of these three types of neurons. However, the membrane properties of the MSNs were differentially altered after withdrawal. There was an enhancement in intrinsic excitability in type II MSNs and a promotion of spike adaptation in type I MSNs. The apamin-sensitive afterhyperpolarization current (I(AHP)) and the apamin-insensitive I(AHP) of the NAcSh MSNs were attenuated after chronic morphine withdrawal. These findings suggest that individual MSNs in the NAcSh manifest unique electrophysiological properties, which might contribute to psychostimulant-induced neuroadaptation.


New insights into the regulation of Axin function in canonical Wnt signaling pathway.

  • Xiaomin Song‎ et al.
  • Protein & cell‎
  • 2014‎

The Wnt signaling pathway plays crucial roles during embryonic development, whose aberration is implicated in a variety of human cancers. Axin, a key component of canonical Wnt pathway, plays dual roles in modulating Wnt signaling: on one hand, Axin scaffolds the "β-catenin destruction complex" to promote β-catenin degradation and therefore inhibits the Wnt signal transduction; on the other hand, Axin interacts with LRP5/6 and facilitates the recruitment of GSK3 to the plasma membrane to promote LRP5/6 phosphorylation and Wnt signaling. The differential assemblies of Axin with these two distinct complexes have to be tightly controlled for appropriate transduction of the "on" or "off" Wnt signal. So far, there are multiple mechanisms revealed in the regulation of Axin activity, such as post-transcriptional modulation, homo/hetero-polymerization and auto-inhibition. These mechanisms may work cooperatively to modulate the function of Axin, thereby playing an important role in controlling the canonical Wnt signaling. In this review, we will focus on the recent progresses regarding the regulation of Axin function in canonical Wnt signaling.


Engineering the heart: evaluation of conductive nanomaterials for improving implant integration and cardiac function.

  • Jin Zhou‎ et al.
  • Scientific reports‎
  • 2014‎

Recently, carbon nanotubes together with other types of conductive materials have been used to enhance the viability and function of cardiomyocytes in vitro. Here we demonstrated a paradigm to construct ECTs for cardiac repair using conductive nanomaterials. Single walled carbon nanotubes (SWNTs) were incorporated into gelatin hydrogel scaffolds to construct three-dimensional ECTs. We found that SWNTs could provide cellular microenvironment in vitro favorable for cardiac contraction and the expression of electrochemical associated proteins. Upon implantation into the infarct hearts in rats, ECTs structurally integrated with the host myocardium, with different types of cells observed to mutually invade into implants and host tissues. The functional measurements showed that SWNTs were essential to improve the performance of ECTs in inhibiting pathological deterioration of myocardium. This work suggested that conductive nanomaterials hold therapeutic potential in engineering cardiac tissues to repair myocardial infarction.


Molecular imaging of induced pluripotent stem cell immunogenicity with in vivo development in ischemic myocardium.

  • Zhiqiang Liu‎ et al.
  • PloS one‎
  • 2013‎

Whether differentiation of induced pluripotent stem cells (iPSCs) in ischemic myocardium enhances their immunogenicity, thereby increasing their chance for rejection, is unclear. Here, we dynamically demonstrated the immunogenicity and rejection of iPSCs in ischemic myocardium using bioluminescent imaging (BLI). Murine iPSCs were transduced with a tri-fusion (TF) reporter gene consisting of firefly luciferase-red fluorescent protein-truncated thymidine kinase (fluc-mrfp-tTK). Ascorbic acid (Vc) were used to induce iPSCs to differentiate into cardiomyocytes (CM). iPSCs and iPS-CMs were intramyocardially injected into immunocompetent or immunosuppressed allogenic murine with myocardial infarction. BLI was performed to track transplanted cells. Immune cell infiltration was evaluated by immunohistochemistry. Syngeneic iPSCs were also injected and evaluated. The results demonstrated that undifferentiated iPSCs survived and proliferated in allogenic immunocompetent recipients early post-transplantation, accompanying with mild immune cell infiltration. With in vivo differentiation, a progressive immune cell infiltration could be detected. While transplantation of allogenic iPSC-CMs were observed an acute rejection from receipts. In immune-suppressed recipients, the proliferation of iPSCs could be maintained and intramyocardial teratomas were formed. Transplantation of syngeneic iPSCs and iPSC-CMs were also observed progressive immune cell infiltration. This study demonstrated that iPSC immunogenicity increases with in vivo differentiation, which will increase their chance for rejection in iPSC-based therapy.


Fabrication of small-diameter vascular scaffolds by heparin-bonded P(LLA-CL) composite nanofibers to improve graft patency.

  • Sheng Wang‎ et al.
  • International journal of nanomedicine‎
  • 2013‎

The poor patency rate following small-diameter vascular grafting remains a major hurdle for the widespread clinical application of artificial blood vessels to date. Our previous studies found that electrospun poly(L-lactide-co-epsilon-caprolactone) (P[LLA-CL]) nanofibers facilitated the attachment and growth of endothelial cells (EC), and heparin incorporated into P(LLA-CL) nanofibers was able to release in a controlled manner. Hence, we hypothesized that heparin-bonded P(LLA-CL) vascular scaffolds with autologous EC pre-endothelialization could significantly promote the graft patency rate. To construct a small-diameter vascular scaffold, the inner layer was fabricated by heparin-bonded P(LLA-CL) nanofibers through coaxial electrospinning, while the outer layer was woven by pure P(LLA-CL) nanofibers. Except dynamic compliance (5.4 1.7 versus 12.8 2.4×10(-4)/mmHg, P<0.05), maximal tensile strength, burst pressure, and suture retention of the composite, scaffolds were comparable to those of canine femoral arteries. In vitro studies indicated that the scaffolds can continuously release heparin for at least 12 weeks and obtain desirable endothelialization through dynamic incubation, which was confirmed by EC viability and proliferation assay and scanning electronic microscopy. Furthermore, in vivo studies demonstrated that pre-endothelialization by autologous ECs provided a better effect on graft patency rate in comparison with heparin loading, and the united application of pre-endothelialization and heparin loading markedly promoted the 24 weeks patency rate of P(LLA-CL) scaffolds (88.9% versus 12.5% in the control group, P<0.05) in the canine femoral artery replacement model. These results suggest that heparin-bonded P(LLA-CL) scaffolds have similar biomechanical properties to those of native arteries and possess a multiporous and biocompatible surface to achieve satisfactory endothelialization in vitro. Heparin-bonded P(LLA-CL) scaffolds with autologous EC pre-endothelialization have the potential to be substitutes for natural small-diameter vessels in planned vascular bypass surgery.


Genome wide association studies for body conformation traits in the Chinese Holstein cattle population.

  • Xiaoping Wu‎ et al.
  • BMC genomics‎
  • 2013‎

Genome-wide association study (GWAS) is a powerful tool for revealing the genetic basis of quantitative traits. However, studies using GWAS for conformation traits of cattle is comparatively less. This study aims to use GWAS to find the candidates genes for body conformation traits.


Mature adipocytes in bone marrow protect myeloma cells against chemotherapy through autophagy activation.

  • Zhiqiang Liu‎ et al.
  • Oncotarget‎
  • 2015‎

A major problem in patients with multiple myeloma is chemotherapy resistance, which develops in myeloma cells upon interaction with bone marrow stromal cells. However, few studies have determined the role of bone marrow adipocytes, a major component of stromal cells in the bone marrow, in myeloma chemotherapy resistance. We reveal that mature human adipocytes activate autophagy and upregulate the expression of autophagic proteins, thereby suppressing chemotherapy-induced caspase cleavage and apoptosis in myeloma cells. We found that adipocytes secreted known and novel adipokines, such as leptin and adipsin. The addition of these adipokines enhanced the expression of autophagic proteins and reduced apoptosis in myeloma cells. In vivo studies further demonstrated the importance of bone marrow-derived adipocytes in the reduced response of myeloma cells to chemotherapy. Our findings suggest that adipocytes, adipocyte-secreted adipokines, and adipocyte-activated autophagy are novel targets for combatting chemotherapy resistance and enhancing treatment efficacy in myeloma patients.


Down-regulation of multiple CDK inhibitor ICK/KRP genes promotes cell proliferation, callus induction and plant regeneration in Arabidopsis.

  • Yan Cheng‎ et al.
  • Frontiers in plant science‎
  • 2015‎

The ICK/KRP cyclin-dependent kinase (CDK) inhibitors are important plant cell cycle regulators sharing only limited similarity with the metazoan CIP/KIP family of CDK inhibitors. Information is still limited regarding the specific functions of different ICK/KRP genes in planta. We have shown previously that down-regulation of multiple CDK inhibitor ICK/KRP genes up-regulates the E2F pathway and increases cell proliferation, and organ and seed sizes in Arabidopsis. In this study, we observed that the quintuple ick1/2/5/6/7 mutant had more cells in the cortical layer of the root apical meristem (RAM) than the wild type (Wt) while its RAM length was similar to that of the Wt, suggesting a faster cell cycle rate in the quintuple mutant. We further investigated the effects of down-regulating ICK genes on tissue culture responses. The cotyledon explants of ick1/2/5/6/7 could form callus efficiently in the absence of cytokinin and also required a lower concentration of 2,4-D for callus induction compared to the Wt plants, suggesting increased competence for callus induction in the mutant. In addition, the quintuple ick mutant showed enhanced abilities to regenerate shoots and roots, suggesting that increased competence to enter the cell cycle in the quintuple mutant might make it possible for more cells to become proliferative and be utilized to form shoots or roots. These findings indicate that CDK activity is a major factor underlying callus induction and increased cell proliferation can enhance in vitro organogenesis.


B5, a thioredoxin reductase inhibitor, induces apoptosis in human cervical cancer cells by suppressing the thioredoxin system, disrupting mitochondrion-dependent pathways and triggering autophagy.

  • Fang-Yuan Shao‎ et al.
  • Oncotarget‎
  • 2015‎

The synthetic curcumin analog B5 is a potent inhibitor of thioredoxin reductase (TrxR) that has potential anticancer effects. The molecular mechanism underlying B5 as an anticancer agent is not yet fully understood. In this study, we report that B5 induces apoptosis in two human cervical cancer cell lines, CaSki and SiHa, as evidenced by the downregulation of XIAP, activation of caspases and cleavage of PARP. The involvement of the mitochondrial pathway in B5-induced apoptosis was suggested by the dissipation of mitochondrial membrane potential and increased expression of pro-apoptotic Bcl-2 family proteins. In B5-treated cells, TrxR activity was markedly inhibited with concomitant accumulation of oxidized thioredoxin, increased formation of reactive oxygen species (ROS), and activation of ASK1 and its downstream regulatory target p38/JNK. B5-induced apoptosis was significantly inhibited in the presence of N-acetyl-l-cysteine. Microscopic examination of B5-treated cells revealed increased presence of cytoplasmic vacuoles. The ability of B5 to activate autophagy in cells was subsequently confirmed by cell staining with acridine orange, accumulation of LC3-II, and measurement of autophagic flux. Unlike B5-induced apoptosis, autophagy induced by B5 is not ROS-mediated but a role for the AKT and AMPK signaling pathways is implied. In SiHa cells but not CaSki cells, B5-induced apoptosis was promoted by autophagy. These data suggest that the anticarcinogenic effects of B5 is mediated by complex interplay between cellular mechanisms governing redox homeostasis, apoptosis and autophagy.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: