Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 17 papers out of 17 papers

Single-neuron RNA-Seq: technical feasibility and reproducibility.

  • Shenfeng Qiu‎ et al.
  • Frontiers in genetics‎
  • 2012‎

Understanding brain function involves improved knowledge about how the genome specifies such a large diversity of neuronal types. Transcriptome analysis of single neurons has been previously described using gene expression microarrays. Using high-throughput transcriptome sequencing (RNA-Seq), we have developed a method to perform single-neuron RNA-Seq. Following electrophysiology recording from an individual neuron, total RNA was extracted by aspirating the cellular contents into a fine glass electrode tip. The mRNAs were reverse transcribed and amplified to construct a single-neuron cDNA library, and subsequently subjected to high-throughput sequencing. This approach was applied to both individual neurons cultured from embryonic mouse hippocampus, as well as neocortical neurons from live brain slices. We found that the average pairwise Spearman's rank correlation coefficient of gene expression level expressed as RPKM (reads per kilobase of transcript per million mapped reads) was 0.51 between five cultured neuronal cells, whereas the same measure between three cortical layer 5 neurons in situ was 0.25. The data suggest that there may be greater heterogeneity of the cortical neurons, as compared to neurons in vitro. The results demonstrate the technical feasibility and reproducibility of RNA-Seq in capturing a part of the transcriptome landscape of single neurons, and confirmed that morphologically identical neurons, even from the same region, have distinct gene expression patterns.


Impaired secretion of apolipoprotein E2 from macrophages.

  • Daping Fan‎ et al.
  • The Journal of biological chemistry‎
  • 2007‎

Human apoE is a multifunctional and polymorphic protein synthesized and secreted by liver, brain, and tissue macrophages. Here we show that apoE isoforms and mutants expressed through lentiviral transduction display cell-specific differences in secretion efficiency. Whereas apoE3, apoE4, and a natural mutant of apoE4 (apoE-Cys(142)) were efficiently secreted from macrophages, apoE2 and a non-natural apoE mutant (apoE-Cys(112)/Cys(142)) were retained in the perinuclear region and only minimally secreted. The secretory block for apoE2 in macrophages was not affected by the ablation of LDLR (low density lipoprotein receptor), ABCA-1, or SR-BI (scavenger receptor class B type I) but was released in the absence of low density lipoprotein receptor related protein (LRP). In co-immunoprecipitation experiments, an anti-apoE antibody pulled down two times more LRP in apoE2-transduced macrophages than in apoE3-expressing macrophages. Non-reducing SDS-PAGE/Western blot analyses showed that macrophage apoE2 is mostly dimeric and multimeric, whereas apoE3 is predominantly monomeric. ApoE2 retention and multimer formation also occurred in human macrophages derived from the monocyte cell line THP-1. These results were specific for macrophages, as in transduced mouse primary hepatocytes: 1) ApoE2 was secreted as efficiently as apoE3 and apoE4; 2) all isoforms were exclusively in monomeric form; 3) there was no co-immunoprecipitation of apoE and LRP. A microsomal triglyceride transfer protein (MTP) inhibitor nearly deleted apoB100 secretion from hepatocytes without affecting apoE secretion. These data show that macrophages retain apoE2, a highly expressed protein carried by about 8% of the human population. Given the role of locally produced apoE in regulating cholesterol efflux, modulating inflammation, and controlling oxidative stress, this unique property of apoE2 may have important impacts on atherogenesis.


Distinct Circuits for Recovery of Eye Dominance and Acuity in Murine Amblyopia.

  • Céleste-Élise Stephany‎ et al.
  • Current biology : CB‎
  • 2018‎

Degrading vision by one eye during a developmental critical period yields enduring deficits in both eye dominance and visual acuity. A predominant model is that "reactivating" ocular dominance (OD) plasticity after the critical period is required to improve acuity in amblyopic adults. However, here we demonstrate that plasticity of eye dominance and acuity are independent and restricted by the nogo-66 receptor (ngr1) in distinct neuronal populations. Ngr1 mutant mice display greater excitatory synaptic input onto both inhibitory and excitatory neurons with restoration of normal vision. Deleting ngr1 in excitatory cortical neurons permits recovery of eye dominance but not acuity. Reciprocally, deleting ngr1 in thalamus is insufficient to rectify eye dominance but yields improvement of acuity to normal. Abolishing ngr1 expression in adult mice also promotes recovery of acuity. Together, these findings challenge the notion that mechanisms for OD plasticity contribute to the alterations in circuitry that restore acuity in amblyopia.


Uncovering the Functional Link Between SHANK3 Deletions and Deficiency in Neurodevelopment Using iPSC-Derived Human Neurons.

  • Guanqun Huang‎ et al.
  • Frontiers in neuroanatomy‎
  • 2019‎

SHANK3 mutations, including de novo deletions, have been associated with autism spectrum disorders (ASD). However, the effects of SHANK3 loss of function on neurodevelopment remain poorly understood. Here we generated human induced pluripotent stem cells (iPSC) in vitro, followed by neuro-differentiation and lentivirus-mediated shRNA expression to evaluate how SHANK3 knockdown affects the in vitro neurodevelopmental process at multiple time points (up to 4 weeks). We found that SHANK3 knockdown impaired both early stage of neuronal development and mature neuronal function, as demonstrated by a reduction in neuronal soma size, growth cone area, neurite length and branch numbers. Notably, electrophysiology analyses showed defects in excitatory and inhibitory synaptic transmission. Furthermore, transcriptome analyses revealed that multiple biological pathways related to neuron projection, motility and regulation of neurogenesis were disrupted in cells with SHANK3 knockdown. In conclusion, utilizing a human iPSC-based neural induction model, this study presented combined morphological, electrophysiological and transcription evidence that support that SHANK3 as an intrinsic, cell autonomous factor that controls cellular function development in human neurons.


Depletion of microglia in developing cortical circuits reveals its critical role in glutamatergic synapse development, functional connectivity, and critical period plasticity.

  • Xiaokuang Ma‎ et al.
  • Journal of neuroscience research‎
  • 2020‎

Microglia populate the early developing brain and mediate pruning of the central synapses. Yet, little is known on their functional significance in shaping the developing cortical circuits. We hypothesize that the developing cortical circuits require microglia for proper circuit maturation and connectivity, and as such, ablation of microglia during the cortical critical period may result in a long-lasting circuit abnormality. We administered PLX3397, a colony-stimulating factor 1 receptor inhibitor, to mice starting at postnatal day 14 and through P28, which depletes >75% of microglia in the visual cortex (VC). This treatment largely covers the critical period (P19-32) of VC maturation and plasticity. Patch clamp recording in VC layer 2/3 (L2/3) and L5 neurons revealed increased mEPSC frequency and reduced amplitude, and decreased AMPA/NMDA current ratio, indicative of altered synapse maturation. Increased spine density was observed in these neurons, potentially reflecting impaired synapse pruning. In addition, VC intracortical circuit functional connectivity, assessed by laser scanning photostimulation combined with glutamate uncaging, was dramatically altered. Using two photon longitudinal dendritic spine imaging, we confirmed that spine elimination/pruning was diminished during VC critical period when microglia were depleted. Reduced spine pruning thus may account for increased spine density and disrupted connectivity of VC circuits. Lastly, using single-unit recording combined with monocular deprivation, we found that ocular dominance plasticity in the VC was obliterated during the critical period as a result of microglia depletion. These data establish a critical role of microglia in developmental cortical synapse pruning, maturation, functional connectivity, and critical period plasticity.


Self-association of human PCSK9 correlates with its LDLR-degrading activity.

  • Daping Fan‎ et al.
  • Biochemistry‎
  • 2008‎

Genetic studies have demonstrated an important role for proprotein convertase subtilisin/kexin type 9 (PCSK9) as a determinant of plasma cholesterol levels. However, the underlying molecular mechanism is not completely understood. To this end, we have generated a mammalian cell expression system for human PCSK9 and its mutants and produced transgenic mice expressing human PCSK9. HEK293T cells transfected with the human PCSK9 DNA construct expressed and secreted PCSK9 and displayed decreased LDLR levels; functional PCSK9 protein was purified from the conditioned medium. In vitro studies showed that PCSK9 self-associated in a concentration-, temperature-, and pH-dependent manner. A mixture of PCSK9 monomers, dimers, and trimers displayed an enhanced LDLR degrading activity compared to monomeric PCSK9. A gain-of-function mutant, D374Y, displayed greatly increased self-association compared to wild-type PCSK9. Moreover, we demonstrated that the catalytic domain of PCSK9 is responsible for the self-association. Self-association of PCSK9 was enhanced by incubation with mouse apoE-/- VLDL and inhibited by incubation with both human and mouse HDL. When PCSK9 protein was incubated with total serum, it partially associated with LDL and HDL but not with VLDL. In transgenic mice, PCSK9 also associated with LDL and HDL but not with VLDL. We conclude that self-association is an intrinsic property of PCSK9, correlated to its LDLR-degrading activity and affected by plasma lipoproteins. These results provide a basis for developing strategies to manipulate PCSK9 activity in the circulation for the treatment of hypercholesterolemia.


Associative and spatial learning and memory deficits in transgenic mice overexpressing the RNA-binding protein HuD.

  • Federico Bolognani‎ et al.
  • Neurobiology of learning and memory‎
  • 2007‎

HuD is a neuronal specific RNA-binding protein associated with the stabilization of short-lived mRNAs during brain development, nerve regeneration and synaptic plasticity. To investigate the functional significance of this protein in the mature brain, we generated transgenic mice overexpressing HuD in forebrain neurons under the control of the alphaCaMKinII promoter. We have previously shown that one of the targets of HuD, GAP-43 mRNA, was stabilized in neurons in the hippocampus, amygdala and cortex of transgenic mice. Animals from two independent lines expressing different levels of the transgene were subjected to a battery of behavioral tests including contextual fear conditioning and the Morris water maze. Our results show that although HuD is increased after learning and memory, constitutive HuD overexpression impaired the acquisition and retention of both cued and contextual fear and the ability to remember the position of a hidden platform in the Morris water maze. No motor-sensory abnormalities were observed in HuD transgenic mice, suggesting that the poor performance of the mice in these tests reflect a true cognitive impairment. We conclude that posttranscriptional regulation of gene expression by stabilization of specific mRNAs may have to be restricted temporally and spatially for proper acquisition and storage of memories.


Early impairment of cortical circuit plasticity and connectivity in the 5XFAD Alzheimer's disease mouse model.

  • Chang Chen‎ et al.
  • Translational psychiatry‎
  • 2022‎

Genetic risk factors for neurodegenerative disorders, such as Alzheimer's disease (AD), are expressed throughout the life span. How these risk factors affect early brain development and function remain largely unclear. Analysis of animal models with high constructive validity for AD, such as the 5xFAD mouse model, may provide insights on potential early neurodevelopmental effects that impinge on adult brain function and age-dependent degeneration. The 5XFAD mouse model over-expresses human amyloid precursor protein (APP) and presenilin 1 (PS1) harboring five familial AD mutations. It is unclear how the expression of these mutant proteins affects early developing brain circuits. We found that the prefrontal cortex (PFC) layer 5 (L5) neurons in 5XFAD mice exhibit transgenic APP overloading at an early post-weaning age. Impaired synaptic plasticity (long-term potentiation, LTP) was seen at 6-8 weeks age in L5 PFC circuit, which was correlated with increased intracellular APP. APP overloading was also seen in L5 pyramidal neurons in the primary visual cortex (V1) during the critical period of plasticity (4-5 weeks age). Whole-cell patch clamp recording in V1 brain slices revealed reduced intrinsic excitability of L5 neurons in 5XFAD mice, along with decreased spontaneous miniature excitatory and inhibitory inputs. Functional circuit mapping using laser scanning photostimulation (LSPS) combined with glutamate uncaging uncovered reduced excitatory synaptic connectivity onto L5 neurons in V1, and a more pronounced reduction in inhibitory connectivity, indicative of altered excitation and inhibition during VC critical period. Lastly, in vivo single-unit recording in V1 confirmed that monocular visual deprivation-induced ocular dominance plasticity during critical period was impaired in 5XFAD mice. Our study reveals plasticity deficits across multiple cortical regions and indicates altered early cortical circuit developmental trajectory as a result of mutant APP/PS1 over-expression.


Modulation of synaptic plasticity and memory by Reelin involves differential splicing of the lipoprotein receptor Apoer2.

  • Uwe Beffert‎ et al.
  • Neuron‎
  • 2005‎

Apolipoprotein E receptor 2 (Apoer2), a member of the LDL receptor gene family, and its ligand Reelin control neuronal migration during brain development. Apoer2 is also essential for induction of long-term potentiation (LTP) in the adult brain. Here we show that Apoer2 is present in the postsynaptic densities of excitatory synapses where it forms a functional complex with NMDA receptors. Reelin signaling through Apoer2 markedly enhances LTP through a mechanism that requires the presence of amino acids encoded by an exon in the intracellular domain of Apoer2. This exon is alternatively spliced in an activity-dependent manner and is required for Reelin-induced tyrosine phosphorylation of NMDA receptor subunits. Mice constitutively lacking the exon perform poorly in learning and memory tasks. Thus, alternative splicing of Apoer2, a novel component of the NMDA receptor complex, controls the modulation of NMDA receptor activity, synaptic neurotransmission, and memory by Reelin.


Shisa6 mediates cell-type specific regulation of depression in the nucleus accumbens.

  • Hee-Dae Kim‎ et al.
  • Molecular psychiatry‎
  • 2021‎

Depression is the leading cause of disability and produces enormous health and economic burdens. Current treatment approaches for depression are largely ineffective and leave more than 50% of patients symptomatic, mainly because of non-selective and broad action of antidepressants. Thus, there is an urgent need to design and develop novel therapeutics to treat depression. Given the heterogeneity and complexity of the brain, identification of molecular mechanisms within specific cell-types responsible for producing depression-like behaviors will advance development of therapies. In the reward circuitry, the nucleus accumbens (NAc) is a key brain region of depression pathophysiology, possibly based on differential activity of D1- or D2- medium spiny neurons (MSNs). Here we report a circuit- and cell-type specific molecular target for depression, Shisa6, recently defined as an AMPAR component, which is increased only in D1-MSNs in the NAc of susceptible mice. Using the Ribotag approach, we dissected the transcriptional profile of D1- and D2-MSNs by RNA sequencing following a mouse model of depression, chronic social defeat stress (CSDS). Bioinformatic analyses identified cell-type specific genes that may contribute to the pathogenesis of depression, including Shisa6. We found selective optogenetic activation of the ventral tegmental area (VTA) to NAc circuit increases Shisa6 expression in D1-MSNs. Shisa6 is specifically located in excitatory synapses of D1-MSNs and increases excitability of neurons, which promotes anxiety- and depression-like behaviors in mice. Cell-type and circuit-specific action of Shisa6, which directly modulates excitatory synapses that convey aversive information, identifies the protein as a potential rapid-antidepressant target for aberrant circuit function in depression.


Mechanisms of cannabinoid CB2 receptor-mediated reduction of dopamine neuronal excitability in mouse ventral tegmental area.

  • Zegang Ma‎ et al.
  • EBioMedicine‎
  • 2019‎

We have recently reported that activation of cannabinoid type 2 receptors (CB2Rs) reduces dopamine (DA) neuron excitability in mouse ventral tegmental area (VTA). Here, we elucidate the underlying mechanisms.


Dual Effect of 5-HT1B/1D Receptors on Dopamine Neurons in Ventral Tegmental Area: Implication for the Functional Switch After Chronic Cocaine Exposure.

  • Ming Gao‎ et al.
  • Biological psychiatry‎
  • 2020‎

Serotonin (5-HT) 1B/1D receptor (5-HT1B/1DR) agonists undergo an abstinence-induced switch in their effects on cocaine-related behaviors, which may involve changes in modulation of dopamine (DA) neurons in the ventral tegmental area (VTA). However, it is unclear how 5-HT1B/1DRs affect VTA DA neuronal function and whether modulation of these neurons mediates the abstinence-induced switch after chronic cocaine exposure.


Induced neural stem cells generated from rat fibroblasts.

  • Guangjun Xi‎ et al.
  • Genomics, proteomics & bioinformatics‎
  • 2013‎

The generation of induced tissue-specific stem cells has been hampered by the lack of well-established methods for the maintenance of pure tissue-specific stem cells like the ones we have for embryonic stem (ES) cell cultures. Using a cocktail of cytokines and small molecules, we demonstrate that primitive neural stem (NS) cells derived from mouse ES cells and rat embryos can be maintained. Furthermore, using the same set of cytokines and small molecules, we show that induced NS (iNS) cells can be generated from rat fibroblasts by forced expression of the transcriptional factors Oct4, Sox2 and c-Myc. The generation and long-term maintenance of iNS cells could have wide and momentous implications.


Time-delimited signaling of MET receptor tyrosine kinase regulates cortical circuit development and critical period plasticity.

  • Ke Chen‎ et al.
  • Molecular psychiatry‎
  • 2021‎

Normal development of cortical circuits, including experience-dependent cortical maturation and plasticity, requires precise temporal regulation of gene expression and molecular signaling. Such regulation, and the concomitant impact on plasticity and critical periods, is hypothesized to be disrupted in neurodevelopmental disorders. A protein that may serve such a function is the MET receptor tyrosine kinase, which is tightly regulated developmentally in rodents and primates, and exhibits reduced cortical expression in autism spectrum disorder and Rett Syndrome. We found that the peak of MET expression in developing mouse cortex coincides with the heightened period of synaptogenesis, but is precipitously downregulated prior to extensive synapse pruning and certain peak periods of cortical plasticity. These results reflect a potential on-off regulatory synaptic mechanism for specific glutamatergic cortical circuits in which MET is enriched. In order to address the functional significance of the 'off' component of the proposed mechanism, we created a controllable transgenic mouse line that sustains cortical MET signaling. Continued MET expression in cortical excitatory neurons disrupted synaptic protein profiles, altered neuronal morphology, and impaired visual cortex circuit maturation and connectivity. Remarkably, sustained MET signaling eliminates monocular deprivation-induced ocular dominance plasticity during the normal cortical critical period; while ablating MET signaling leads to early closure of critical period plasticity. The results demonstrate a novel mechanism in which temporal regulation of a pleiotropic signaling protein underlies cortical circuit maturation and timing of cortical critical period, features that may be disrupted in neurodevelopmental disorders.


Transcriptional repression by FEZF2 restricts alternative identities of cortical projection neurons.

  • Jeremiah Tsyporin‎ et al.
  • Cell reports‎
  • 2021‎

Projection neuron subtype identities in the cerebral cortex are established by expressing pan-cortical and subtype-specific effector genes that execute terminal differentiation programs bestowing neurons with a glutamatergic neuron phenotype and subtype-specific morphology, physiology, and axonal projections. Whether pan-cortical glutamatergic and subtype-specific characteristics are regulated by the same genes or controlled by distinct programs remains largely unknown. Here, we show that FEZF2 functions as a transcriptional repressor, and it regulates subtype-specific identities of both corticothalamic and subcerebral neurons by selectively repressing expression of genes inappropriate for each neuronal subtype. We report that TLE4, specifically expressed in layer 6 corticothalamic neurons, is recruited by FEZF2 to inhibit layer 5 subcerebral neuronal genes. Together with previous studies, our results indicate that a cortical glutamatergic identity is specified by multiple parallel pathways active in progenitor cells, whereas projection neuron subtype-specific identity is achieved through selectively repressing genes associated with alternate identities in differentiating neurons.


Depletion of microglia augments the dopaminergic neurotoxicity of MPTP.

  • Xiaoxia Yang‎ et al.
  • FASEB journal : official publication of the Federation of American Societies for Experimental Biology‎
  • 2018‎

The activation of microglia and the various substances they produce have been linked to the pathologic development of Parkinson's disease (PD), but the precise role of microglia in PD remains to be defined. The survival of microglia depends on colony-stimulating factor 1 receptor (CSF1R) signaling, and CSF1R inhibition results in rapid elimination of microglia in the central nervous system. Using a mouse PD model induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) treatment, we showed that the depletion of microglia via the CSF1R inhibitor PLX3397 exacerbated the impairment of locomotor activities and the loss of dopaminergic neurons. Further, depletion of microglia augmented the production of inflammatory mediators and infiltration of leukocytes in the brain after MPTP exposure. Microglia depletion-induced aggravation of MPTP neurotoxicity was also seen in lymphocyte-deficient mice. In addition, the depletion of microglia did not affect the production of brain-derived neurotrophic factor, but it dramatically augmented the production of inflammatory mediators by astrocytes after MPTP treatment. Our findings suggest microglia play a protective role against MPTP-induced neuroinflammation and dopaminergic neurotoxicity.-Yang, X., Ren, H., Wood, K., Li, M., Qiu, S., Shi, F.-D., Ma, C., Liu, Q. Depletion of microglia augments the dopaminergic neurotoxicity of MPTP.


Reduced HGF/MET Signaling May Contribute to the Synaptic Pathology in an Alzheimer's Disease Mouse Model.

  • Jing Wei‎ et al.
  • Frontiers in aging neuroscience‎
  • 2022‎

Alzheimer's disease (AD) is a neurodegenerative disorder strongly associates with aging. While amyloid plagues and neurofibrillary tangles are pathological hallmarks of AD, recent evidence suggests synaptic dysfunction and physical loss may be the key mechanisms that determine the clinical syndrome and dementia onset. Currently, no effective therapy prevents neuropathological changes and cognitive decline. Neurotrophic factors and their receptors represent novel therapeutic targets to treat AD and dementia. Recent clinical literature revealed that MET receptor tyrosine kinase protein is reduced in AD patient's brain. Activation of MET by its ligand hepatocyte growth factor (HGF) initiates pleiotropic signaling in the developing brain that promotes neurogenesis, survival, synaptogenesis, and plasticity. We hypothesize that if reduced MET signaling plays a role in AD pathogenesis, this might be reflected in the AD mouse models and as such provides opportunities for mechanistic studies on the role of HGF/MET in AD. Examining the 5XFAD mouse model revealed that MET protein exhibits age-dependent progressive reduction prior to overt neuronal pathology, which cannot be explained by indiscriminate loss of total synaptic proteins. In addition, genetic ablation of MET protein in cortical excitatory neurons exacerbates amyloid-related neuropathology in 5XFAD mice. We further found that HGF enhances prefrontal layer 5 neuron synaptic plasticity measured by long-term potentiation (LTP). However, the degree of LTP enhancement is significantly reduced in 5XFAD mice brain slices. Taken together, our study revealed that early reduction of HGF/MET signaling may contribute to the synaptic pathology observed in AD.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: