Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 33 papers

Detection of Exosomal PD-L1 RNA in Saliva of Patients With Periodontitis.

  • Jialiang Yu‎ et al.
  • Frontiers in genetics‎
  • 2019‎

Periodontitis is the most prevalent inflammatory disease of the periodontium, and is related to oral and systemic health. Exosomes are emerging as non-invasive biomarker for liquid biopsy. We here evaluated the levels of programmed death-ligand 1 (PD-L1) mRNA in salivary exosomes from patients with periodontitis and non-periodontitis controls. The purposes of this study were to establish a procedure for isolation and detection of mRNA in exosomes from saliva of periodontitis patients, to characterize the level of salivary exosomal PD-L1, and to illustrate its clinical relevance. Bioinformatics analysis suggested that periodontitis was associated with an inflammation gene expression signature, that PD-L1 expression positively correlated with inflammation in periodontitis based on gene set enrichment analysis (GSEA) and that PD-L1 expression was remarkably elevated in periodontitis patients versus control subjects. Exosomal RNAs were successfully isolated from saliva of 61 patients and 30 controls and were subjected to qRT-PCR. Levels of PD-L1 mRNA in salivary exosomes were higher in periodontitis patients than controls (P < 0.01). Salivary exosomal PD-L1 mRNA showed significant difference between the stages of periodontitis. In summary, the protocols for isolating and detecting exosomal RNA from saliva of periodontitis patients were, for the first time, characterized. The current study suggests that assay of exosomes-based PD-L1 mRNA in saliva has potential to distinguish periodontitis from the healthy, and the levels correlate with the severity/stage of periodontitis.


GASC1 Promotes Stemness of Esophageal Squamous Cell Carcinoma via NOTCH1 Promoter Demethylation.

  • Ruinuo Jia‎ et al.
  • Journal of oncology‎
  • 2019‎

The highest incidence of esophageal squamous cell carcinoma (ESCC) occurs in China. Cancer stem cells play key roles for tumor progression. Gene amplified in squamous cell carcinoma 1 (GASC1) is essential to maintain self-renewal and differentiation potential of embryonic stem cells. This study aimed to reveal the effect and mechanism of GASC1 on ESCC stemness. The biological function of GASC1 in ESCC was evaluated both in vitro and in vivo. ChIP assay was performed to determine the molecular mechanism of GASC1 in epigenetic regulation of NOTCH1. We found that GASC1 expression was increased in poor differentiated ESCC cells and tissues. ESCC patients with a high level of GASC1 presented a significantly worse survival rate. GASC1 expression in purified ALDH+ ESCC cells was significantly higher than that in ALDH- cells. The stemness of ESCC was dramatically decreased after GASC1 blockade. Furthermore, blockade of GASC1 decreased NOTCH1 expression via increase of NOTCH1 promoter H3K9me2 and H3K9me3. Moreover, the impaired stemness after blockade of GASC1 could be reversed after transfection of NOTCH1 overexpression lentiviral vector. GASC1 promoted stemness in ESCC cells via NOTCH1 promoter demethylation. Therefore, GASC1/NOTCH1 signaling might be a potential therapeutic target for the treatment of ESCC patients.


Specific Anti-biofilm Activity of Carbon Quantum Dots by Destroying P. gingivalis Biofilm Related Genes.

  • Gaofeng Liang‎ et al.
  • International journal of nanomedicine‎
  • 2020‎

Biofilms protect bacteria from antibiotics and this can produce drug-resistant strains, especially the main pathogen of periodontitis, Porphyromonas gingivalis. Carbon quantum dots with various biomedical properties are considered to have great application potential in antibacterial and anti-biofilm treatment.


A computationally constructed ceRNA interaction network based on a comparison of the SHEE and SHEEC cell lines.

  • Jiachun Sun‎ et al.
  • Cellular & molecular biology letters‎
  • 2016‎

Long non-coding RNAs (lncRNAs) play critical and complicated roles in the regulation of various biological processes, including chromatin modification, transcription and post-transcriptional processing. Interestingly, some lncRNAs serve as miRNA "sponges" that inhibit interaction with miRNA targets in post-transcriptional regulation. We constructed a putative competing endogenous RNA (ceRNA) network by integrating lncRNA, miRNA and mRNA expression based on high-throughput RNA sequencing and microarray data to enable a comparison of the SHEE and SHEEC cell lines. Using Targetscan and miRanda bioinformatics algorithms and miRTarbase microRNA-target interactions database, we established that 51 miRNAs sharing 13,623 MREs with 2260 genes and 82 lncRNAs were involved in this ceRNA network. Through a biological function analysis, the ceRNA network appeared to be primarily involved in cell proliferation, apoptosis, the cell cycle, invasion and metastasis. Functional pathway analyses demonstrated that the ceRNA network potentially modulated multiple signaling pathways, such as the MAPK, Ras, HIF-1, Rap1, and PI3K/Akt signaling pathways. These results might provide new clues to better understand the regulation of the ceRNA network in cancer.


Genetic Polymorphisms in the Vitamin D Pathway and Non-small Cell Lung Cancer Survival.

  • Jinyu Kong‎ et al.
  • Pathology oncology research : POR‎
  • 2020‎

Various genetic polymorphisms have been linked to lung cancer susceptibility and survival outcomes. Vitamin D (VD) regulates cell proliferation and differentiation, inhibits tumor growth and induces apoptosis. Observations from several previous studies including our own suggest that genetic polymorphisms in the VD pathway may be associated with lung cancer risk. The aim of this study is to assess if genetic polymorphisms in the VD pathway are associated with the prognosis of non-small cell lung cancer (NSCLC). Nine single nucleotide polymorphisms (SNPs) in five genes in the VD pathway were genotyped with the TaqMan assays in 542 patients with primary NSCLC, and the relationships between these SNPs and overall survival were evaluated. We found that SNP rs10741657 in the CYP2R1 gene was associated with the prognosis of NSCLC, especially in elderly patients and not being treated with chemotherapy. Some of the VD pathway-related genetic polymorphisms may influence the prognosis of NSCLC. More research is needed to further confirm the finding and test if VD supplements can be used for NSCLC treatment.


Circulating microRNAs as novel potential diagnostic biomarkers for ovarian cancer: a systematic review and updated meta-analysis.

  • Xinshuai Wang‎ et al.
  • Journal of ovarian research‎
  • 2019‎

Ovarian cancer is the primary cause of cancer-associated deaths among gynaecological malignancies. Increasing evidence suggests that microRNAs may be potential biomarkers for the diagnosis and prognosis of cancer. In this study, we conducted a systematic review and meta-analysis to summarize the global research and to evaluate the overall diagnostic accuracy of miRNAs in detecting ovarian cancer.


The oncogenic roles of nuclear receptor coactivator 1 in human esophageal carcinoma.

  • Lu Wang‎ et al.
  • Cancer medicine‎
  • 2018‎

Nuclear receptor coactivator 1 (NCOA1) plays crucial roles in the regulation of gene expression mediated by a wide spectrum of steroid receptors such as androgen receptor (AR), estrogen receptor α (ER α), and estrogen receptor β (ER β). Therefore, dysregulations of NCOA1 have been found in a variety of cancer types. However, the clinical relevance and the functional roles of NCOA1 in human esophageal squamous cell carcinoma (ESCC) are less known. We found in this study that elevated levels of NCOA1 protein and/or mRNA as well as amplification of the NCOA1 gene occur in human ESCC. Elevated levels of NCOA1 due to these dysregulations were not only associated with more aggressive clinic-pathologic parameters but also poorer survival. Results from multiple cohorts of ESCC patients strongly suggest that the levels of NCOA1 could serve as an independent predictor of overall survival. In addition, silencing NCOA1 in ESCC cells remarkably decreased proliferation, migration, and invasion. These findings not only indicate that NCOA1 plays important roles in human ESCC but the levels of NCOA1 also could serve as a potential prognostic biomarker of ESCC and targeting NCOA1 could be an efficacious strategy in ESCC treatment.


Prognostic role of microRNA-150 in various carcinomas: a meta-analysis.

  • Wei Wang‎ et al.
  • OncoTargets and therapy‎
  • 2016‎

MicroRNA-150 (miR-150) was revealed to be an attractive prognostic biomarker in recent studies. However, the prognostic significance of miR-150 expression in cancer remains inconclusive. The aim of this study was to summarize the global predicting role of miR-150 in survival in patients with various carcinomas.


Engineered exosome-mediated delivery of functionally active miR-26a and its enhanced suppression effect in HepG2 cells.

  • Gaofeng Liang‎ et al.
  • International journal of nanomedicine‎
  • 2018‎

Exosomes are closed-membrane nanovesicles that are secreted by a variety of cells and exist in most body fluids. Recent studies have demonstrated the potential of exosomes as natural vehicles that target delivery of functional small RNA and chemotherapeutics to diseased cells.


Splice variant of growth hormone-releasing hormone receptor drives esophageal squamous cell carcinoma conferring a therapeutic target.

  • Xiao Xiong‎ et al.
  • Proceedings of the National Academy of Sciences of the United States of America‎
  • 2020‎

The extrahypothalamic growth hormone-releasing hormone (GHRH) and its cognate receptors (GHRH-Rs) and splice variants are expressed in a variety of cancers. It has been shown that the pituitary type of GHRH-R (pGHRH-R) mediates the inhibition of tumor growth induced by GHRH-R antagonists. However, GHRH-R antagonists can also suppress some cancers that do not express pGHRH-R, yet the underlying mechanisms have not been determined. Here, using human esophageal squamous cell carcinoma (ESCC) as a model, we were able to reveal that SV1, a known splice variant of GHRH-R, is responsible for the inhibition induced by GHRH-R antagonist MIA-602. We demonstrated that GHRH-R splice variant 1 (SV1) is a hypoxia-driven promoter of tumor progression. Hypoxia-elevated SV1 activates a key glycolytic enzyme, muscle-type phosphofructokinase (PFKM), through the nuclear factor kappa B (NF-κB) pathway, which enhances glycolytic metabolism and promotes progression of ESCC. The malignant actions induced by the SV1-NF-κB-PFKM pathway could be reversed by MIA-602. Altogether, our studies demonstrate a mechanism by which GHRH-R antagonists target SV1. Our findings suggest that SV1 is a hypoxia-induced oncogenic promoter which can be an alternative target of GHRH-R antagonists.


Targeting PELP1 Attenuates Angiogenesis and Enhances Chemotherapy Efficiency in Colorectal Cancer.

  • Jianlin Zhu‎ et al.
  • Cancers‎
  • 2022‎

Abnormal angiogenesis is one of the important hallmarks of colorectal cancer as well as other solid tumors. Optimally, anti-angiogenesis therapy could restrain malignant angiogenesis to control tumor expansion. PELP1 is as a scaffolding oncogenic protein in a variety of cancer types, but its involvement in angiogenesis is unknown. In this study, PELP1 was found to be abnormally upregulated and highly coincidental with increased MVD in CRC. Further, treatment with conditioned medium (CM) from PELP1 knockdown CRC cells remarkably arrested the function of human umbilical vein endothelial cells (HUVECs) compared to those treated with CM from wildtype cells. Mechanistically, the STAT3/VEGFA axis was found to mediate PELP1-induced angiogenetic phenotypes of HUVECs. Moreover, suppression of PELP1 reduced tumor growth and angiogenesis in vivo accompanied by inactivation of STAT3/VEGFA pathway. Notably, in vivo, PELP1 suppression could enhance the efficacy of chemotherapy, which is caused by the normalization of vessels. Collectively, our findings provide a preclinical proof of concept that targeting PELP1 to decrease STAT3/VEGFA-mediated angiogenesis and improve responses to chemotherapy due to normalization of vessels. Given the newly defined contribution to angiogenesis of PELP1, targeting PELP1 may be a potentially ideal therapeutic strategy for CRC as well as other solid tumors.


Neoantigen-based cancer vaccination using chimeric RNA-loaded dendritic cell-derived extracellular vesicles.

  • Xiao Xiong‎ et al.
  • Journal of extracellular vesicles‎
  • 2022‎

Cancer vaccines critically rely on the availability of targetable immunogenic cancer-specific neoepitopes. However, mutation-based immunogenic neoantigens are rare or even non-existent in subgroups of cancer types. To address this issue, we exploited a cancer-specific aberrant transcription-induced chimeric RNA, designated A-Pas chiRNA, as a possible source of clinically relevant and targetable neoantigens. A-Pas chiRNA encodes a recently discovered cancer-specific chimeric protein that comprises full-length astrotactin-2 (ASTN2) C-terminally fused in-frame to the antisense sequence of the 18th intron of pregnancy-associated plasma protein-A (PAPPA). We used extracellular vesicles (EVs) from A-Pas chiRNA-transfected dendritic cells (DCs) to produce the cell-free anticancer vaccine DEXA-P . Treatment of immunocompetent cancer-bearing mice with DEXA-P inhibited tumour growth and prolonged animal survival. In summary, we demonstrate for the first time that cancer-specific transcription-induced chimeric RNAs can be exploited to produce a cell-free cancer vaccine that induces potent CD8+ T cell-mediated anticancer immunity. Our novel approach may be particularly useful for developing cancer vaccines to treat malignancies with low mutational burden or without mutation-based antigens. Moreover, this cell-free anticancer vaccine approach may offer several practical advantages over cell-based vaccines, such as ease of scalability and genetic modifiability as well as enhanced shelf life.


Injectable and Temperature-Sensitive Titanium Carbide-Loaded Hydrogel System for Photothermal Therapy of Breast Cancer.

  • Jun Yao‎ et al.
  • Frontiers in bioengineering and biotechnology‎
  • 2021‎

Recently, organic-inorganic hybrid materials have gained much attention as effective photothermal agents for cancer treatment. In this study, Pluronic F127 hydrogel-coated titanium carbide (Ti3C2) nanoparticles were utilized as an injectable photothermal agent. The advantages of these nanoparticles are their green synthesis and excellent photothermal efficiency. In this system, lasers were mainly used to irradiate Ti3C2 nanoparticles to produce a constant high temperature, which damaged cancer cells. The nanoparticles were found to be stable during storage at low temperatures for at least 2 weeks. The Ti3C2 nanoparticles exhibited a shuttle-shaped structure, and the hydrogels presented a loosely meshed structure. In addition, Ti3C2 nanoparticles did not affect the reversible temperature sensitivity of the gel, and the hydrogel did not affect the photothermal properties of Ti3C2 nanoparticles. The in vitro and in vivo results show that this hydrogel system can effectively inhibit tumor growth upon exposure to near-infrared irradiation with excellent biocompatibility and biosafety. The photothermal agent-embedded hydrogel is a promising photothermal therapeutic strategy for cancer treatment by enhancing the retention in vivo and elevating the local temperature in tumors.


Repurposing dextromethorphan and metformin for treating nicotine-induced cancer by directly targeting CHRNA7 to inhibit JAK2/STAT3/SOX2 signaling.

  • Lu Wang‎ et al.
  • Oncogene‎
  • 2021‎

Smoking is one of the most impactful lifestyle-related risk factors in many cancer types including esophageal squamous cell carcinoma (ESCC). As the major component of tobacco and e-cigarettes, nicotine is not only responsible for addiction to smoking but also a carcinogen. Here we report that nicotine enhances ESCC cancer malignancy and tumor-initiating capacity by interacting with cholinergic receptor nicotinic alpha 7 subunit (CHRNA7) and subsequently activating the JAK2/STAT3 signaling pathway. We found that aberrant CHRNA7 expression can serve as an independent prognostic factor for ESCC patients. In multiple ESCC mouse models, dextromethorphan and metformin synergistically repressed nicotine-enhanced cancer-initiating cells (CIC) properties and inhibited ESCC progression. Mechanistically, dextromethorphan non-competitively inhibited nicotine binding to CHRNA7 while metformin downregulated CHRNA7 expression by antagonizing nicotine-induced promoter DNA hypomethylation of CHRNA7. Since dextromethorphan and metformin are two safe FDA-approved drugs with minimal undesirable side-effects, the combination of these drugs has a high potential as either a preventive and/or a therapeutic strategy against nicotine-promoted ESCC and perhaps other nicotine-sensitive cancer types as well.


MicroRNA-645, up-regulated in human adencarcinoma of gastric esophageal junction, inhibits apoptosis by targeting tumor suppressor IFIT2.

  • Xiaoshan Feng‎ et al.
  • BMC cancer‎
  • 2014‎

An increasing body of evidence indicates that miRNAs have a critical role in carcinogenesis and cancer progression; however, the role of miRNAs in the tumorigenesis of adencarcinoma of gastric esophageal junction (AGEJ) remains largely unclear.


Expression of GOLPH3 protein in colon cancer tissues and its association with the prognosis of patients.

  • Bo Zhou‎ et al.
  • Oncology letters‎
  • 2016‎

The present study aimed to investigate the expression of Golgi phosphoprotein-3 (GOLPH3) protein in colon cancer tissues and the association with the prognosis of patients. In total, 98 patients with colon cancer admitted to The First Affiliated Hospital of Henan University of Science and Technology for surgery between June 2011 and June 2013 were taken as the observation group. In addition, 15 healthy individuals, determined by enteroscopy, were taken as the control group. The expressions of GOLPH3 mRNA and protein were detected by reverse transcription-polymerase chain reaction and immunohistochemistry, respectively. The patients were divided into GOLPH3-positive and GOLPH3-negative groups according to the expression of GOLPH3. The expression of GOLPH3 in colon cancer and its association with the prognosis of patients was analyzed. The expression of GOLPH3 mRNA and protein in colon cancer tissues was significantly increased compared with normal colon mucosa (P<0.05); among the tissues, GOLPH3 was not expressed in 29 patients and positively expressed in 69 patients. The expression of GOLPH3 was negatively associated with the tumor differentiation degree, and positively associated with tumor invasion depth, lymph node metastasis and clinical stages in GOLPH3-positive patients. The cumulative recurrence rates at 1, 2 and 3 years were significantly lower in GOLPH3-negative patients (P<0.05). The survival rates at 1, 2 and 3 years in the GOLPH3-positive group were significantly higher than that of the GOLPH3-negative patients (P<0.05). In conclusion, the positive expression of GOLPH3 mRNA and protein in colon cancer tissue was significantly increased compared with the control group. GOLPH3 expression was closely associated with the pathological features, consisting of tissue typing, clinical stage, degree of tumor invasion and lymph node metastasis, and GOLPH3 expression. Patients with GOLPH3 overexpression also had a poor prognosis.


Efficacy and safety of capecitabine-based first-line chemotherapy in advanced or metastatic breast cancer: a meta-analysis of randomised controlled trials.

  • Weijiao Yin‎ et al.
  • Oncotarget‎
  • 2015‎

We sought to evaluate the efficacy and safety of capecitabine-based therapy as first-line chemotherapy in advanced breast cancer. Randomised controlled trials of capecitabine monotherapy or combined treatment were included in the meta-analysis. PubMed, EMBASE, the Cochrane Library database and important meeting summaries were searched systematically. Outcomes were progression-free survival (PFS), overall survival (OS), overall response rate (ORR) and grades 3-4 drug-related adverse events.Nine trials with 1798 patients were included. The results indicated a significant improvement with capecitabine-based chemotherapy compared with capecitabine-free chemotherapy in ORR (relative risk [RR] 1.14, 95% confidence interval [CI] 1.03 to 1.26, P = 0.013) and PFS (hazard ratio [HR] 0.77, 95% CI 0.69 to 0.87, P < 0.0001). Overall survival favoured capecitabine-based chemotherapy, but this was not significant. There were more incidences of neutropenia and neutropenic fever in the capecitabine-free chemotherapy group and more vomiting, diarrhoea and hand-foot syndrome in the capecitabine-based chemotherapy group. There were no significant differences in nausea, fatigue, cardiotoxicity or mucositis/stomatitis between the two treatment regimens.Capecitabine-based chemotherapy significantly improves ORR and PFS in patients with advanced breast cancer, but has no demonstrable impact on OS. Capecitabine-based regimens are suitable as first-line treatment for patients with advanced breast cancer.


Directional Migration in Esophageal Squamous Cell Carcinoma (ESCC) is Epigenetically Regulated by SET Nuclear Oncogene, a Member of the Inhibitor of Histone Acetyltransferase Complex.

  • Xiang Yuan‎ et al.
  • Neoplasia (New York, N.Y.)‎
  • 2017‎

Directional cell migration is of fundamental importance to a variety of biological events, including metastasis of malignant cells. Herein, we specifically investigated SET oncoprotein, a subunit of the recently identified inhibitor of acetyltransferases (INHAT) complex and identified its role in the establishment of front-rear cell polarity and directional migration in Esophageal Squamous Cell Carcinoma (ESCC). We further define the molecular circuits that govern these processes by showing that SET modulated DOCK7/RAC1 and cofilin signaling events. Moreover, a detailed analysis of the spatial distribution of RAC1 and cofilin allowed us to decipher the synergistical contributions of the two in coordinating the advancing dynamics by measuring architectures, polarities, and cytoskeletal organizations of the lamellipodia leading edges. In further investigations in vivo, we identified their unique role at multiple levels of the invasive cascade for SET cell and indicate the necessity for their functional balance to enable efficient invasion as well. Additionally, SET epigenetically repressed miR-30c expression by deacetylating histones H2B and H4 on its promoter, which was functionally important for the biological effects of SET in our cell-context. Finally, we corroborated our findings in vivo by evaluating the clinical relevance of SET signaling in the metastatic burden in mice and a large series of patients with ESCC at diagnosis, observing it's significance in predicting metastasis formation. Our findings uncovered a novel signaling network initiated by SET that epigenetically modulated ESCC properties and suggest that targeting the regulatory axis might be a promising strategy to inhibit migration and metastasis.


MTA3-SOX2 Module Regulates Cancer Stemness and Contributes to Clinical Outcomes of Tongue Carcinoma.

  • Zhimeng Yao‎ et al.
  • Frontiers in oncology‎
  • 2019‎

Cancer cell plasticity plays critical roles in both tumorigenesis and tumor progression. Metastasis-associated protein 3 (MTA3), a component of the nucleosome remodeling and histone deacetylase (NuRD) complex and multi-effect coregulator, can serve as a tumor suppressor in many cancer types. However, the role of MTA3 in tongue squamous cell cancer (TSCC) remains unclear although it is the most prevalent head and neck cancer and often with poor prognosis. By analyzing both published datasets and clinical specimens, we found that the level of MTA3 was lower in TSCC compared to normal tongue tissues. Data from gene set enrichment analysis (GSEA) also indicated that MTA3 was inversely correlated with cancer stemness. In addition, the levels of MTA3 in both samples from TSCC patients and TSCC cell lines were negatively correlated with SOX2, a key regulator of the plasticity of cancer stem cells (CSCs). We also found that SOX2 played an indispensable role in MTA3-mediated CSC repression. Using the mouse model mimicking human TSCC we demonstrated that the levels of MTA3 and SOX2 decreased and increased, respectively, during the process of tumorigenesis and progression. Finally, we showed that the patients in the MTA3low/SOX2high group had the worst prognosis suggesting that MTA3low/SOX2high can serve as an independent prognostic factor for TSCC patients. Altogether, our data suggest that MTA3 is capable of repressing TSCC CSC properties and tumor growth through downregulating SOX2 and MTA3low/SOX2high might be a potential prognostic factor for TSCC patients.


GASC1-Adapted Neoadjuvant Chemotherapy for Resectable Esophageal Squamous Cell Carcinoma: A Prospective Clinical Biomarker Trial.

  • Ruinuo Jia‎ et al.
  • Journal of oncology‎
  • 2020‎

Neoadjuvant chemotherapy (NCT) is a standard care for esophageal squamous cell carcinoma (ESCC), but the efficacy is unsatisfactory. Cancer stem cells (CSCs) play key roles in chemotherapy resistance. Gene amplified in squamous cell carcinoma 1 (GASC1) is a neoteric gene in stemness maintaining of ESCC. We aimed to reveal whether GASC1 could be a predictive biomarker for NCT in ESCC. ESCC patients (T2-4N0-2M0) were evaluated for GASC1 expression using immunohistochemical staining and classified as GASC1-low group (GLG) and GASC1-high group (GHG). NCT was delivered in two cycles and then the surgery was completed. Primary endpoints were tumor regression grade (TRG) and objective response rate (ORR); secondary endpoints were radical surgical resection (R0) rate and three-year overall survival (OS). 60 patients were eligible with evaluable outcomes: 24 in GHG and 36 in GLG. Between GHG and GLG, TRG1, TRG2, TRG3, and TRG4 were 0 : 16.7%, 20.8% : 41.7%, 58.3% : 36.1%, and 20.8% : 5.6%, respectively (P=0.006); ORR and R0 rate were 33.3% : 69.4% (P=0.006) and 75% : 94.4% (P=0.046), respectively; the median OS was 20 : 32 (months) (P=0.0356). No significant difference in the three-year OS was observed between GHG and GLG: 29.2% : 41.7% (P=0.24). Furthermore, the GASC1 expression level was associated with poor OS independent of other factors by univariate and multivariate analyses. Therefore, GASC1 might be a potential biomarker to predict NCT efficacy for ESCC.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: