Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 60 papers

Detection of Exosomal PD-L1 RNA in Saliva of Patients With Periodontitis.

  • Jialiang Yu‎ et al.
  • Frontiers in genetics‎
  • 2019‎

Periodontitis is the most prevalent inflammatory disease of the periodontium, and is related to oral and systemic health. Exosomes are emerging as non-invasive biomarker for liquid biopsy. We here evaluated the levels of programmed death-ligand 1 (PD-L1) mRNA in salivary exosomes from patients with periodontitis and non-periodontitis controls. The purposes of this study were to establish a procedure for isolation and detection of mRNA in exosomes from saliva of periodontitis patients, to characterize the level of salivary exosomal PD-L1, and to illustrate its clinical relevance. Bioinformatics analysis suggested that periodontitis was associated with an inflammation gene expression signature, that PD-L1 expression positively correlated with inflammation in periodontitis based on gene set enrichment analysis (GSEA) and that PD-L1 expression was remarkably elevated in periodontitis patients versus control subjects. Exosomal RNAs were successfully isolated from saliva of 61 patients and 30 controls and were subjected to qRT-PCR. Levels of PD-L1 mRNA in salivary exosomes were higher in periodontitis patients than controls (P < 0.01). Salivary exosomal PD-L1 mRNA showed significant difference between the stages of periodontitis. In summary, the protocols for isolating and detecting exosomal RNA from saliva of periodontitis patients were, for the first time, characterized. The current study suggests that assay of exosomes-based PD-L1 mRNA in saliva has potential to distinguish periodontitis from the healthy, and the levels correlate with the severity/stage of periodontitis.


GASC1 Promotes Stemness of Esophageal Squamous Cell Carcinoma via NOTCH1 Promoter Demethylation.

  • Ruinuo Jia‎ et al.
  • Journal of oncology‎
  • 2019‎

The highest incidence of esophageal squamous cell carcinoma (ESCC) occurs in China. Cancer stem cells play key roles for tumor progression. Gene amplified in squamous cell carcinoma 1 (GASC1) is essential to maintain self-renewal and differentiation potential of embryonic stem cells. This study aimed to reveal the effect and mechanism of GASC1 on ESCC stemness. The biological function of GASC1 in ESCC was evaluated both in vitro and in vivo. ChIP assay was performed to determine the molecular mechanism of GASC1 in epigenetic regulation of NOTCH1. We found that GASC1 expression was increased in poor differentiated ESCC cells and tissues. ESCC patients with a high level of GASC1 presented a significantly worse survival rate. GASC1 expression in purified ALDH+ ESCC cells was significantly higher than that in ALDH- cells. The stemness of ESCC was dramatically decreased after GASC1 blockade. Furthermore, blockade of GASC1 decreased NOTCH1 expression via increase of NOTCH1 promoter H3K9me2 and H3K9me3. Moreover, the impaired stemness after blockade of GASC1 could be reversed after transfection of NOTCH1 overexpression lentiviral vector. GASC1 promoted stemness in ESCC cells via NOTCH1 promoter demethylation. Therefore, GASC1/NOTCH1 signaling might be a potential therapeutic target for the treatment of ESCC patients.


Toxicity Assessment of PEG-PCCL Nanoparticles and Preliminary Investigation on Its Anti-tumor Effect of Paclitaxel-Loading.

  • Wei Li‎ et al.
  • Nanoscale research letters‎
  • 2018‎

The efficiency of single treatment of conventional chemotherapy drugs is unpleasantly reduced by the physiological barriers of tumors. In this regard, nanoparticles have become attractive for achieving such medical purpose of targeted cancer therapy by delivering anti-tumor agents to the needed area. A novel drug deliverer, poly (ethylene glycol) carboxyl-poly (ε-caprolactone) (PEG-PCCL), has been reported to be highly hydrophilic and stable, while little is known about its organic toxicity. This study focused on systemic toxicity assessments of PEG-PCCL. The pharmacokinetics of PTX-loaded PEG-PCCL (PEG-PCCL/PTX) and its anti-tumor effect were preliminarily investigated. In the present work, PEG-PCCL was characterized by laser particle size analyzer and transmission electron microscopy. The cytotoxicity was investigated by MTT test, LDH leakage assay, immunofluorescence, and transmission electron microscopy. Hemolysis, phlebitis, and organ toxicity tests were performed to demonstrate the biocompatibility and acute biotoxicity. H22 tumor-bearing mice were used to evaluate the pharmacokinetics of the micells of PEG-PCCL/PTX and its anti-tumor effect. The results showed that the size of PEG-PCCL nanospheres was 97 ± 2.6 nm. PEG-PCCL treatment showed little cytotoxicity and good biocompatibility, and did not exhibit organ toxicity. PTX-loading efficiency was 49.98%. The pharmacokinetic study on H22 tumor-bearing mice revealed that PEG-PCCL/PTX has higher stability and slower release than PTX alone. Together, these results suggest that PEG-PCCL nanosphere has little toxicity to organisms and is a potential candidate of biocompatible drug vehicle for hydrophobic drugs.


A computationally constructed ceRNA interaction network based on a comparison of the SHEE and SHEEC cell lines.

  • Jiachun Sun‎ et al.
  • Cellular & molecular biology letters‎
  • 2016‎

Long non-coding RNAs (lncRNAs) play critical and complicated roles in the regulation of various biological processes, including chromatin modification, transcription and post-transcriptional processing. Interestingly, some lncRNAs serve as miRNA "sponges" that inhibit interaction with miRNA targets in post-transcriptional regulation. We constructed a putative competing endogenous RNA (ceRNA) network by integrating lncRNA, miRNA and mRNA expression based on high-throughput RNA sequencing and microarray data to enable a comparison of the SHEE and SHEEC cell lines. Using Targetscan and miRanda bioinformatics algorithms and miRTarbase microRNA-target interactions database, we established that 51 miRNAs sharing 13,623 MREs with 2260 genes and 82 lncRNAs were involved in this ceRNA network. Through a biological function analysis, the ceRNA network appeared to be primarily involved in cell proliferation, apoptosis, the cell cycle, invasion and metastasis. Functional pathway analyses demonstrated that the ceRNA network potentially modulated multiple signaling pathways, such as the MAPK, Ras, HIF-1, Rap1, and PI3K/Akt signaling pathways. These results might provide new clues to better understand the regulation of the ceRNA network in cancer.


Comparative Transcriptome Analysis of Gonads for the Identification of Sex-Related Genes in Giant Freshwater Prawns (MacrobrachiumRosenbergii) Using RNA Sequencing.

  • Jianping Jiang‎ et al.
  • Genes‎
  • 2019‎

: The giant freshwater prawn (Macrobrachiumrosenbergii) exhibits sex dimorphism between the male and female individuals. To date, the molecular mechanism governing gonadal development was unclear, and limited data were available on the gonad transcriptome of M.rosenbergii. Here, we conducted comprehensive gonadal transcriptomic analysis of female (ZW), super female (WW), and male (ZZ) M.rosenbergii for gene discovery. A total of 70.33 gigabases (Gb) of sequences were generated. There were 115,338 unigenes assembled with a mean size of 1,196 base pair (bp) and N50 of 2,195 bp. Alignment against the National Center for Biotechnology Information (NCBI) non-redundant nucleotide/protein sequence database (NR and NT), the Kyoto Encyclopedia of Genes and Genomes (KEGG) database, SwissProt database, Protein family (Pfam), Gene ontology (GO), and the eukaryotic orthologous group (KOG) database, 36,282 unigenes were annotated at least in one database. Comparative transcriptome analysis observed that 10,641, 16,903, and 3,393 genes were significantly differentially expressed in ZW vs. ZZ, WW vs. ZZ, and WW vs. ZW samples, respectively. Enrichment analysis of differentially expressed genes (DEGs) resulted in 268, 153, and 42 significantly enriched GO terms, respectively, and a total of 56 significantly enriched KEGG pathways. Additionally, 23 putative sex-related genes, including Gtsf1, IR, HSP21, MRPINK, Mrr, and other potentially promising candidate genes were identified. Moreover, 56,241 simple sequence repeats (SSRs) were identified. Our findings provide a valuable archive for further functional analyses of sex-related genes and future discoveries of underlying molecular mechanisms of gonadal development and sex determination.


Specific Anti-biofilm Activity of Carbon Quantum Dots by Destroying P. gingivalis Biofilm Related Genes.

  • Gaofeng Liang‎ et al.
  • International journal of nanomedicine‎
  • 2020‎

Biofilms protect bacteria from antibiotics and this can produce drug-resistant strains, especially the main pathogen of periodontitis, Porphyromonas gingivalis. Carbon quantum dots with various biomedical properties are considered to have great application potential in antibacterial and anti-biofilm treatment.


Apatinib enhances the anti-tumor effect of paclitaxel via the PI3K/p65/Bcl-xl pathway in triple-negative breast cancer.

  • Jing Chen‎ et al.
  • Annals of translational medicine‎
  • 2021‎

Apatinib is a new generation of small molecule tyrosine kinase inhibitor, which can highly selectively inhibit phosphorylation of vascular endothelial growth factor receptor 2 (VEGFR-2). This study aimed to investigate the synergistic effects of apatinib and paclitaxel (PTX) on triple-negative breast cancer (TNBC) in vivo and in vitro, and to explore the molecular mechanism of the PI3K/p65/Bcl-xl pathway.


Clinical Significance of Fusobacterium nucleatum Infection and Regulatory T Cell Enrichment in Esophageal Squamous Cell Carcinoma.

  • Ning Zhang‎ et al.
  • Pathology oncology research : POR‎
  • 2021‎

A variety of pathogenic microorganisms promote tumor occurrence and development through long-term colonization in the body. Fusobacterium nucleatum (F. nucleatum) is abundant in precancerous esophageal lesions and is closely related to the malignant progression of esophageal squamous cell carcinoma (ESCC). The invasion of exogenous microorganisms can reshape the immune microenvironment, make the immune system incapacitated, and assist tumor cells in immune escape. A variety of pathogenic microorganisms induce the recruitment of regulatory T cell (Tregs) to allow tumor cells to escape immune surveillance and provide favorable conditions for their own long-term colonization. Tregs are one of the major obstacles to tumor immunotherapy and have a significant positive correlation with the occurrence and development of many kinds of tumors. Because F. nucleatum can instantly enter cells and colonize for a long time, we speculated that F. nucleatum infection could facilitate the immune escape of tumor cells through enrichment of Tregs and promote the malignant progression of ESCC. In this study, we found a significant concordance between F. nucleatum infection and Tregs infiltration. Therefore, we propose the view that chronic infection of F. nucleatum may provide favorable conditions for long-term colonization of itself by recruiting Tregs and suppressing the immune response. At the same time, the massive enrichment of Treg may also weaken the immune response and assist in the long-term colonization of F. nucleatum. We analyzed the correlation between F. nucleatum infection with the clinicopathological characteristics and survival prognosis of the patients. F. nucleatum infection was found to be closely related to sex, smoking, drinking, degree of differentiation, depth of invasion, lymph node metastasis, and clinical stage. The degree of differentiation, depth of infiltration, lymph node metastasis, clinical stage, and F. nucleatum infection are independent risk factors affecting ESCC prognosis. Additionally, the survival rate and median survival time were significantly shortened in the F. nucleatum infection positive group. Therefore, we propose that long-term smoking and alcohol consumption cause poor oral and esophageal environments, thereby significantly increasing the risk of F. nucleatum infection. In turn, F. nucleatum infection and colonization may weaken the antitumor immune response through Treg enrichment and further assist in self-colonization, promoting the malignant progression of ESCC.


Genetic Polymorphisms in the Vitamin D Pathway and Non-small Cell Lung Cancer Survival.

  • Jinyu Kong‎ et al.
  • Pathology oncology research : POR‎
  • 2020‎

Various genetic polymorphisms have been linked to lung cancer susceptibility and survival outcomes. Vitamin D (VD) regulates cell proliferation and differentiation, inhibits tumor growth and induces apoptosis. Observations from several previous studies including our own suggest that genetic polymorphisms in the VD pathway may be associated with lung cancer risk. The aim of this study is to assess if genetic polymorphisms in the VD pathway are associated with the prognosis of non-small cell lung cancer (NSCLC). Nine single nucleotide polymorphisms (SNPs) in five genes in the VD pathway were genotyped with the TaqMan assays in 542 patients with primary NSCLC, and the relationships between these SNPs and overall survival were evaluated. We found that SNP rs10741657 in the CYP2R1 gene was associated with the prognosis of NSCLC, especially in elderly patients and not being treated with chemotherapy. Some of the VD pathway-related genetic polymorphisms may influence the prognosis of NSCLC. More research is needed to further confirm the finding and test if VD supplements can be used for NSCLC treatment.


Case Report: Clinical Features of a Chinese Boy With Epileptic Seizures and Intellectual Disabilities Who Carries a Truncated NUS1 Variant.

  • Pingli Zhang‎ et al.
  • Frontiers in pediatrics‎
  • 2021‎

The mental retardation-55 with seizures (MRD55) is a rare genetic disease characterized by developmental delay, intellectual disability, language delay and multiple types of epileptic seizures. It is caused by pathogenic variants of the NUS1 gene, which encodes Nogo-B receptor (NgBR), a necessary subunit for the glycosylation reactions in mammals. To date, 25 disease-causing mutations of NUS1 have been reported, which are responsible for various diseases, including dystonia, Parkinson's disease, developmental and epileptic encephalopathy as well as congenital disorder of glycosylation. In addition, only 9 of these mutations were reported with detailed clinical features. There are no reports about Chinese cases with MRD55. In this study, a novel, de novo pathogenic variant of NUS1 (c.51_54delTCTG, p.L18Tfs*31) was identified in a Chinese patient with intellectual disability and epileptic seizures. This pathogenic variant resulted in truncated NgBR proteins, which might be the cause of the clinical features of the patient. Oxcarbazepine was an effective treatment for improving speech and movement of the patient, who consequently presented with no seizure. With this novel pathogenic variant found in NUS1, we expand the genotype spectrum of MRD55 and provide valuable insights into the potential genotype-phenotype correlation.


Prognostic role of microRNA-150 in various carcinomas: a meta-analysis.

  • Wei Wang‎ et al.
  • OncoTargets and therapy‎
  • 2016‎

MicroRNA-150 (miR-150) was revealed to be an attractive prognostic biomarker in recent studies. However, the prognostic significance of miR-150 expression in cancer remains inconclusive. The aim of this study was to summarize the global predicting role of miR-150 in survival in patients with various carcinomas.


Circulating microRNAs as novel potential diagnostic biomarkers for ovarian cancer: a systematic review and updated meta-analysis.

  • Xinshuai Wang‎ et al.
  • Journal of ovarian research‎
  • 2019‎

Ovarian cancer is the primary cause of cancer-associated deaths among gynaecological malignancies. Increasing evidence suggests that microRNAs may be potential biomarkers for the diagnosis and prognosis of cancer. In this study, we conducted a systematic review and meta-analysis to summarize the global research and to evaluate the overall diagnostic accuracy of miRNAs in detecting ovarian cancer.


hsa_circRNA6448-14 promotes carcinogenesis in esophageal squamous cell carcinoma.

  • Yaowen Zhang‎ et al.
  • Aging‎
  • 2020‎

Circular RNAs (circRNAs) play important roles in cancer progression. hsa_circRNA6448-14 originates from exon 5 to exon 11 of the TGFBI gene. We investigated the roles of hsa_circRNA6448-14 in esophageal squamous cell carcinoma (ESCC) with microarrays and quantitative real-time polymerase chain reaction (qRT-PCR), Kaplan-Meier analysis, loss-of-function and gain-of-function assays, and pull-down assays for miRNA binding. The hsa_circRNA6448-14-miRNA-mRNA network was drawn using Circos. hsa_circRNA6448-14 was significantly upregulated in ESCC tissues and cell lines. As a diagnostic biomarker, hsa_circRNA6448-14 had an area under the curve (AUC), sensitivity, and specificity of 0.906, 82.9%, and 85.5%, respectively. hsa_circRNA6448-14 upregulation was correlated with poor differentiation, advanced pTNM stage, poor disease-free survival (DFS), and poor overall survival (OS). Elevated hsa_circRNA6448-14 promoted cell proliferation, migration, invasion, and inhibited apoptosis in vitro. hsa_circRNA6448-14 functioned as a miRNA sponge to competitively bind miR-455-3p, and hsa_circRNA6448-14 expression negatively correlated with that of miR-455-3p. hsa_circRNA6448-14 promoted carcinogenesis in ESCC, suggesting that hsa_circRNA6448-14 could serve as a diagnostic and prognostic biomarker for ESCC.


Splice variant of growth hormone-releasing hormone receptor drives esophageal squamous cell carcinoma conferring a therapeutic target.

  • Xiao Xiong‎ et al.
  • Proceedings of the National Academy of Sciences of the United States of America‎
  • 2020‎

The extrahypothalamic growth hormone-releasing hormone (GHRH) and its cognate receptors (GHRH-Rs) and splice variants are expressed in a variety of cancers. It has been shown that the pituitary type of GHRH-R (pGHRH-R) mediates the inhibition of tumor growth induced by GHRH-R antagonists. However, GHRH-R antagonists can also suppress some cancers that do not express pGHRH-R, yet the underlying mechanisms have not been determined. Here, using human esophageal squamous cell carcinoma (ESCC) as a model, we were able to reveal that SV1, a known splice variant of GHRH-R, is responsible for the inhibition induced by GHRH-R antagonist MIA-602. We demonstrated that GHRH-R splice variant 1 (SV1) is a hypoxia-driven promoter of tumor progression. Hypoxia-elevated SV1 activates a key glycolytic enzyme, muscle-type phosphofructokinase (PFKM), through the nuclear factor kappa B (NF-κB) pathway, which enhances glycolytic metabolism and promotes progression of ESCC. The malignant actions induced by the SV1-NF-κB-PFKM pathway could be reversed by MIA-602. Altogether, our studies demonstrate a mechanism by which GHRH-R antagonists target SV1. Our findings suggest that SV1 is a hypoxia-induced oncogenic promoter which can be an alternative target of GHRH-R antagonists.


The anti-B7-H4 checkpoint synergizes trastuzumab treatment to promote phagocytosis and eradicate breast cancer.

  • Xiaochen Hu‎ et al.
  • Neoplasia (New York, N.Y.)‎
  • 2020‎

Trastuzumab is a humanized mAb used to treat HER2-overexpressing breast cancer; however its mechanisms remain to be fully elucidated. Previous studies suggest a role for immunity in mediating trastuzumab-specific antitumor effects. This study evaluated the role(s) of trastuzumab and other antibodies on macrophage activation and Ab-dependent cell-mediated phagocytosis (ADCP) of HER2+ breast cancer cells in vitro and in vivo. We employed orthotopic implantation of HER2+ murine breast cancer (BC) cells in immunocompetent mouse models, a human HER2+ BC xenograft in an immune humanized mouse model, and human PDXs involving adoptive transfer of autologous macrophages to simulate an endogenous mammary tumor-immune microenvironment. Our study demonstrated that trastuzumab greatly and consistently increased macrophage frequency and tumor-cell phagocytosis, and that concurrent knockdown of B7-H4 by a neutralizing antibody increased immune cell infiltration and promoted an antitumor phenotype. Furthermore, neoadjuvant trastuzumab therapy significantly upregulated B7-H4 in the cancer-infiltrating macrophages of HER2+ BC patients, which predicted poor trastuzumab response. We suggest that strategies to specifically enhance ADCP activity might be critical to overcoming resistance to HER2 mAb therapies by inhibiting tumor growth and potentially enhance antigen presentation. Furthermore, these results advance the understanding of macrophage plasticity by uncovering a dual role for ADCP in macrophages involving elimination of tumors by engulfing cancer cells while causing a concomitant undesired effect by upregulating immunosuppressive checkpoints.


The zinc finger protein Miz1 suppresses liver tumorigenesis by restricting hepatocyte-driven macrophage activation and inflammation.

  • Wenjie Zhang‎ et al.
  • Immunity‎
  • 2021‎

Chronic inflammation plays a central role in hepatocellular carcinoma (HCC), but the contribution of hepatocytes to tumor-associated inflammation is not clear. Here, we report that the zinc finger transcription factor Miz1 restricted hepatocyte-driven inflammation to suppress HCC, independently of its transcriptional activity. Miz1 was downregulated in HCC mouse models and a substantial fraction of HCC patients. Hepatocyte-specific Miz1 deletion in mice generated a distinct sub-group of hepatocytes that produced pro-inflammatory cytokines and chemokines, which skewed the polarization of the tumor-infiltrating macrophages toward pro-inflammatory phenotypes to promote HCC. Mechanistically, Miz1 sequestrated the oncoprotein metadherin (MTDH), preventing MTDH from promoting transcription factor nuclear factor κB (NF-κB) activation. A distinct sub-group of pro-inflammatory cytokine-producing hepatocytes was also seen in a subset of HCC patients. In addition, Miz1 expression inversely correated with disease recurrence and poor prognosis in HCC patients. Our findings identify Miz1 as a tumor suppressor that prevents hepatocytes from driving inflammation in HCC.


The Synergistic Effects of Pyrotinib Combined With Adriamycin on HER2-Positive Breast Cancer.

  • Chaokun Wang‎ et al.
  • Frontiers in oncology‎
  • 2021‎

Pyrotinib (PYR) is a pan-HER kinase inhibitor that inhibits signaling via the RAS/RAF/MEK/MAPK and PI3K/AKT pathways. In this study, we aimed to investigate the antitumor efficacy of pyrotinib combined with adriamycin (ADM) and explore its mechanisms on HER2+ breast cancer. We investigated the effects of PYR and ADM on breast cancer in vitro and in vivo. MTT assay, Wound-healing, and transwell invasion assays were used to determine the effects of PYR, ADM or PYR combined with ADM on cell proliferation, migration, and invasion of SK-BR-3 and AU565 cells in vitro. Cell apoptosis and cycle were detected through flow cytometry. In vivo, xenograft models were established to test the effect of PYR, ADM, or the combined therapy on the nude mice. Western blotting was performed to assess the expression of Akt, p-Akt, p-65, p-p65, and FOXC1. The results indicated that PYR and ADM significantly inhibited the proliferation, migration, and invasion of SK-BR-3 and AU565 cells, and the inhibitory rate of the combination group was higher than each monotherapy group. PYR induced G1 phase cell-cycle arrest, while ADM induced G2 phase arrest, while the combination group induced G2 phase arrest. The combined treatment showed synergistic anticancer activities. Moreover, PYR significantly downregulated the expression of p-Akt, p-p65, and FOXC1. In clinical settings, PYR also exerts satisfactory efficacy against breast cancer. These findings suggest that the combination of PYR and ADM shows synergistic effects both in vitro and in vivo. PYR suppresses the proliferation, migration, and invasion of breast cancers through down-regulation of the Akt/p65/FOXC1 pathway.


Injectable and Temperature-Sensitive Titanium Carbide-Loaded Hydrogel System for Photothermal Therapy of Breast Cancer.

  • Jun Yao‎ et al.
  • Frontiers in bioengineering and biotechnology‎
  • 2021‎

Recently, organic-inorganic hybrid materials have gained much attention as effective photothermal agents for cancer treatment. In this study, Pluronic F127 hydrogel-coated titanium carbide (Ti3C2) nanoparticles were utilized as an injectable photothermal agent. The advantages of these nanoparticles are their green synthesis and excellent photothermal efficiency. In this system, lasers were mainly used to irradiate Ti3C2 nanoparticles to produce a constant high temperature, which damaged cancer cells. The nanoparticles were found to be stable during storage at low temperatures for at least 2 weeks. The Ti3C2 nanoparticles exhibited a shuttle-shaped structure, and the hydrogels presented a loosely meshed structure. In addition, Ti3C2 nanoparticles did not affect the reversible temperature sensitivity of the gel, and the hydrogel did not affect the photothermal properties of Ti3C2 nanoparticles. The in vitro and in vivo results show that this hydrogel system can effectively inhibit tumor growth upon exposure to near-infrared irradiation with excellent biocompatibility and biosafety. The photothermal agent-embedded hydrogel is a promising photothermal therapeutic strategy for cancer treatment by enhancing the retention in vivo and elevating the local temperature in tumors.


Targeting PELP1 Attenuates Angiogenesis and Enhances Chemotherapy Efficiency in Colorectal Cancer.

  • Jianlin Zhu‎ et al.
  • Cancers‎
  • 2022‎

Abnormal angiogenesis is one of the important hallmarks of colorectal cancer as well as other solid tumors. Optimally, anti-angiogenesis therapy could restrain malignant angiogenesis to control tumor expansion. PELP1 is as a scaffolding oncogenic protein in a variety of cancer types, but its involvement in angiogenesis is unknown. In this study, PELP1 was found to be abnormally upregulated and highly coincidental with increased MVD in CRC. Further, treatment with conditioned medium (CM) from PELP1 knockdown CRC cells remarkably arrested the function of human umbilical vein endothelial cells (HUVECs) compared to those treated with CM from wildtype cells. Mechanistically, the STAT3/VEGFA axis was found to mediate PELP1-induced angiogenetic phenotypes of HUVECs. Moreover, suppression of PELP1 reduced tumor growth and angiogenesis in vivo accompanied by inactivation of STAT3/VEGFA pathway. Notably, in vivo, PELP1 suppression could enhance the efficacy of chemotherapy, which is caused by the normalization of vessels. Collectively, our findings provide a preclinical proof of concept that targeting PELP1 to decrease STAT3/VEGFA-mediated angiogenesis and improve responses to chemotherapy due to normalization of vessels. Given the newly defined contribution to angiogenesis of PELP1, targeting PELP1 may be a potentially ideal therapeutic strategy for CRC as well as other solid tumors.


Chidamide Reverses Fluzoparib Resistance in Triple-Negative Breast Cancer Cells.

  • Xinyang Li‎ et al.
  • Frontiers in oncology‎
  • 2022‎

Poly (ADP-ribose) polymerase inhibitor (PARPi) resistance is a new challenge for antitumor therapy. The purpose of this study was to investigate the reversal effects of chidamide on fluzoparib resistance, a PARPi, and its mechanism of action. A fluzoparib-resistant triple-negative breast cancer (TNBC) cell line was constructed, and the effects of chidamide and fluzoparib on drug-resistant cells were studied in vitro and in vivo. The effects of these drugs on cell proliferation, migration, invasiveness, the cell cycle, and apoptosis were detected using an MTT assay, wound-healing and transwell invasion assays, and flow cytometry. Bioinformatics was used to identify hub drug resistance genes and Western blots were used to assess the expression of PARP, RAD51, MRE11, cleaved Caspase9, and P-CDK1. Xenograft models were established to analyze the effects of these drugs on nude mice. In vivo results showed that chidamide combined with fluzoparib significantly inhibited the proliferation, migration, and invasiveness of drug-resistant cells and restored fluzoparib sensitivity to drug-resistant cells. The combination of chidamide and fluzoparib significantly inhibited the expression of the hub drug resistance genes RAD51 and MRE11, arrested the cell cycle at the G2/M phase, and induced cell apoptosis. The findings of this work show that chidamide combined with fluzoparib has good antineoplastic activity and reverses TNBC cell resistance to fluzoparil by reducing the expression levels of RAD51 and MRE11.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: