Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 8 papers out of 8 papers

Foliar Spraying of Glycine Betaine Alleviated Growth Inhibition, Photoinhibition, and Oxidative Stress in Pepper (Capsicum annuum L.) Seedlings under Low Temperatures Combined with Low Light.

  • Nenghui Li‎ et al.
  • Plants (Basel, Switzerland)‎
  • 2023‎

Low temperature combined with low light (LL stress) is a typical environmental stress that limits peppers' productivity, yield, and quality in northwestern China. Glycine betaine (GB), an osmoregulatory substance, has increasingly valuable effects on plant stress resistance. In this study, pepper seedlings were treated with different concentrations of GB under LL stress, and 20 mM of GB was the best treatment. To further explore the mechanism of GB in response to LL stress, four treatments, including CK (normal temperature and light, 28/18 °C, 300 μmol m-2 s-1), CB (normal temperature and light + 20 mM GB), LL (10/5 °C, 100 μmol m-2 s-1), and LB (10/5 °C, 100 μmol m-2 s-1 + 20 mM GB), were investigated in terms of pepper growth, biomass accumulation, photosynthetic capacity, expression levels of encoded proteins Capsb, cell membrane permeability, antioxidant enzyme gene expression and activity, and subcellular localization. The results showed that the pre-spraying of GB under LL stress significantly alleviated the growth inhibition of pepper seedlings; increased plant height by 4.64%; increased root activity by 63.53%; and decreased photoinhibition by increasing the chlorophyll content; upregulating the expression levels of encoded proteins Capsb A, Capsb B, Capsb C, Capsb D, Capsb S, Capsb P1, and Capsb P2 by 30.29%, 36.69%, 18.81%, 30.05%, 9.01%, 6.21%, and 16.45%, respectively; enhancing the fluorescence intensity (OJIP curves), the photochemical efficiency (Fv/Fm, Fv'/Fm'), qP, and NPQ; improving the light energy distribution of PSΠ (Y(II), Y(NPQ), and Y(NO)); and increasing the photochemical reaction fraction and reduced heat dissipation, thereby increasing plant height by 4.64% and shoot bioaccumulation by 13.55%. The pre-spraying of GB under LL stress also upregulated the gene expression of CaSOD, CaPOD, and CaCAT; increased the activity of the ROS-scavenging ability in the pepper leaves; and coordinately increased the SOD activity in the mitochondria, the POD activity in the mitochondria, chloroplasts, and cytosol, and the CAT activity in the cytosol, which improved the LL resistance of the pepper plants by reducing excess H2O2, O2-, MDA, and soluble protein levels in the leaf cells, leading to reduced biological membrane damage. Overall, pre-spraying with GB effectively alleviated the negative effects of LL stress in pepper seedlings.


Transcriptome Analysis Unveiled the Intricate Interplay between Sugar Metabolism and Lipid Biosynthesis in Symplocos paniculate Fruit.

  • Wenjun Li‎ et al.
  • Plants (Basel, Switzerland)‎
  • 2023‎

Symplocos paniculate is an oil plant exhibiting tissue-specific variations in oil content and fatty acid composition across the whole fruit (mainly pulp and seed). And its oil synthesis is intricately linked to the accumulation and transformation of sugars. Nevertheless, there remains a dearth of understanding regarding how sugar metabolism impacts oil synthesis in S. paniculate fruit. To unravel the intricate mechanism underlying the impact of sugar metabolism on lipid biosynthesis in S. paniculata fruit, a comparative analysis was conducted on the transcriptome and metabolite content of pulp and seed throughout fruit development. The findings revealed that the impact of sugar metabolism on oil synthesis varied across different stages of fruit development. Notably, during the early fruit developmental stage (from 90 to 120 DAF), pivotal genes involved in sugar metabolism, such as PGK3, PKP1, PDH-E1, MDH, and malQ, along with key genes associated with oil synthesis like KAR, HAD, and PAP were predominantly expressed in the pulp. Consequently, this preferential expression led to earlier accumulation of oil in the pulp tissue compared to the seed. Whereas, during the fruit maturity stage (from 120 DAF to 140 DAF), these genes exhibited a high level of expression in seed, thereby facilitating the rapid and substantial accumulation of seed oil compared to pulp. The sugar metabolism activity in various parts of S. paniculata fruit plays a pivotal role in oil synthesis and is contingent upon the developmental stage. These findings can offer alternative genes for further gene enhancement through molecular biotechnology, thereby augmenting fruit oil yield and altering fatty acid composition.


Exogenous Proline Enhances Systemic Defense against Salt Stress in Celery by Regulating Photosystem, Phenolic Compounds, and Antioxidant System.

  • Yanqiang Gao‎ et al.
  • Plants (Basel, Switzerland)‎
  • 2023‎

This study aimed to explore how exogenous proline induces salinity tolerance in celery. We analyzed the effects of foliar spraying with 0.3 mM proline on celery growth, photosystem, phenolic compounds, and antioxidant system under salt stress (100 mM NaCl), using no salt stress and no proline spraying as control. The results showed that proline-treated plants exhibited a significant increase in plant biomass due to improved growth physiology, supported by gas exchange parameters, chlorophyll fluorescence, and Calvin cycle enzyme activity (Ketosasaccharide-1,5-diphosphate carboxylase and Fructose-1,6-diphosphate aldolase) results. Also, proline spraying significantly suppressed the increase in relative conductivity and malondialdehyde content caused by salt stress, suggesting a reduction in biological membrane damage. Moreover, salt stress resulted in hydrogen peroxide, superoxide anions and 4-coumaric acid accumulation in celery, and their contents were reduced after foliar spraying of proline. Furthermore, proline increased the activity of antioxidant enzymes (superoxide dismutase, peroxidase, and catalase) and the content of non-enzymatic antioxidants (reduced ascorbic acid, glutathione, caffeic acid, chlorogenic acid, total phenolic acids, and total flavonoids). Additionally, proline increased the activity of key enzymes (ascorbate oxidase, ascorbate peroxidase, glutathione reductase, and dehydroascorbate reductase) in the ascorbic acid-glutathione cycle, activating it to counteract salt stress. In summary, exogenous proline promoted celery growth under salt stress, enhanced photosynthesis, increased total phenolic acid and flavonoid contents, and improved antioxidant capacity, thereby improving salt tolerance in celery.


Ferrous Sulfate-Mediated Control of Phytophthora capsici Pathogenesis and Its Impact on Pepper Plant.

  • Gongfu Du‎ et al.
  • Plants (Basel, Switzerland)‎
  • 2023‎

Phytophthora capsici, a destructive fungal pathogen, poses a severe threat to pepper (Capsicum annuum L.) crops worldwide, causing blights that can result in substantial yield losses. Traditional control methods often come with environmental concerns or entail substantial time investments. In this research, we investigate an alternative approach involving ferrous sulfate (FeSO4) application to combat P. capsici and promote pepper growth. We found that FeSO4 effectively inhibits the growth of P. capsici in a dose-dependent manner, disrupting mycelial development and diminishing pathogenicity. Importantly, FeSO4 treatment enhances the biomass and resistance of pepper plants, mitigating P. capsici-induced damage. Microbiome analysis demonstrates that FeSO4 significantly influences soil microbial communities, particularly fungi, within the pepper root. Metabolomics data reveal extensive alterations in the redox metabolic processes of P. capsici under FeSO4 treatment, leading to compromised cell membrane permeability and oxidative stress in the pathogen. Our study presents FeSO4 as a promising and cost-effective solution for controlling P. capsici in pepper cultivation while simultaneously promoting plant growth. These findings contribute to a deeper understanding of the intricate interactions between iron, pathogen control, and plant health, offering a potential tool for sustainable pepper production.


Metabolomic Analysis Reveals the Metabolic Diversity of Wild and Cultivated Stellaria Radix (Stellaria dichotoma L. var. lanceolata Bge.).

  • Zhenkai Li‎ et al.
  • Plants (Basel, Switzerland)‎
  • 2023‎

Stellaria Radix, called Yinchaihu in Chinese, is a traditional Chinese medicine, which is obtained from the dried roots of Stellaria dichotoma L. var. lanceolata Bge. Cultivated yinchaihu (YCH) has become a main source of production to alleviate the shortage of wild plant resources, but it is not clear whether the metabolites of YCH change with the mode of production. In this study, the contents of methanol extracts, total sterols and total flavonoids in wild and cultivated YCH are compared. The metabolites were analyzed by ultra-high performance liquid chromatography-tandem time-of-flight mass spectrometry. The content of methanol extracts of the wild and cultivated YCH all exceeded the standard content of the Chinese Pharmacopoeia. However, the contents of total sterols and total flavonoids in the wild YCH were significantly higher than those in the cultivated YCH. In total, 1586 metabolites were identified by mass spectrometry, and 97 were significantly different between the wild and cultivated sources, including β-sitosterol, quercetin derivatives as well as many newly discovered potential active components, such as trigonelline, arctiin and loganic acid. The results confirm that there is a rich diversity of metabolites in the wild and cultivated YCH, and provide a useful theoretical guidance for the evaluation of quality in the production of YCH.


The Impact of Growth Years on the Medicinal Material Characteristics and Metabolites of Stellaria dichotoma L. var. lanceolata Bge. Reveals the Optimal Harvest Age.

  • Zhenkai Li‎ et al.
  • Plants (Basel, Switzerland)‎
  • 2023‎

The original plant of Chinese medicine Stellariae Radix (Yin Chai Hu) is Stellaria dichotoma L. var. lanceolata Bge (abbreviated as SDL). SDL is a perennial herbaceous plant and a characteristic crop in Ningxia. Growth years are vital factors that affect the quality of perennial medicinal materials. This study aims to investigate the impact of growth years on SDL and screen for the optimal harvest age by comparing the medicinal material characteristics of SDL with different growth years. Additionally, metabolomics analysis using UHPLC-Q-TOF MS was employed to investigate the impact of growth years on the accumulation of metabolites in SDL. The results show that the characteristics of medicinal materials and the drying rate of SDL gradually increase with the increase in growth years. The fastest development period of SDL occurred during the first 3 years, after which the development slowed down. Medicinal materials characteristics of 3-year-old SDL exhibited mature qualities with a high drying rate, methanol extract content, and the highest content of total sterols and total flavonoids. A total of 1586 metabolites were identified, which were classified into 13 major classes with more than 50 sub-classes. Multivariate statistical analysis indicated significant differences in the diversity of metabolites of SDL in different growth years, with greater differences observed in metabolites as the growth years increased. Moreover, different highly expressed metabolites in SDL at different growth years were observed: 1-2 years old was beneficial to the accumulation of more lipids, while 3-5 years old was conducive to accumulating more alkaloids, benzenoids, etc. Furthermore, 12 metabolites accumulating with growth years and 20 metabolites decreasing with growth years were screened, and 17 significantly different metabolites were noted in 3-year-old SDL. In conclusion, growth years not only influenced medicinal material characteristics, drying rate, content of methanol extract, and total sterol and flavonoid contents, but also had a considerable effect on SDL metabolites and metabolic pathways. SDL planted for 3 years presented the optimum harvest time. The screened significantly different metabolites with biological activity, such as rutin, cucurbitacin e, isorhamnetin-3-o-glucoside, etc., can be utilized as potential quality markers of SDL. This research provides references for studying the growth and development of SDL medicinal materials, the accumulation of metabolites, and the selection of optimal harvest time.


In Vitro Propagation, Huperzine A Content and Antioxidant Activity of Three Genotypic Huperzia serrata.

  • Yan Yang‎ et al.
  • Plants (Basel, Switzerland)‎
  • 2021‎

Huperzia serrata is a traditional herb and endangered Chinese medicinal material, which has attracted much attention due to its production of Huperzine A (HupA). In vitro propagation of H. serrata is considered a new way to relieve the resource pressure of H. serrata. In this study, three different genotypic wild H. serrata were used for in vitro propagation. Then, the antioxidant activity and the content of HupA in the regenerated H. serrata were investigated. The results showed the survival rate of the explant was increased to 25.37% when using multiple sterilization processes. The best induction medium for H. serrata was the Schenk and Hildebrandt (SH) medium supplemented with 0.5 mg·L-1 Naphthalene acetic acid (NAA) and 0.1 mg·L-1 2,4-Dichlorophenoxyacetic acid (2,4-D), where the regeneration rate of the explant was to 57.04%. The best proliferation medium was the SH medium with NAA (1.0 mg·L-1), as the biomass of in vitro tissue increased 164.17 ± 0.41 times. High-performance liquid chromatography analysis showed that the in vitro culture of three genotypes could produce HupA and the content of HupA was 53.90-87.17 µg·g-1. The antioxidant experiment showed that the methanol extract of in vitro H. serrata had higher antioxidant activity than that of wild H. serrata. This study provides a reliable in vitro H. serrata culture protocol and laid an important foundation for the antioxidant capacity of the thallus and the content of HupA.


Analysis of the Complete Mitochondrial Genome of the Bitter Gourd (Momordica charantia).

  • Yu Niu‎ et al.
  • Plants (Basel, Switzerland)‎
  • 2023‎

Bitter gourd (Momordica charantia L.) is a significant vegetable. Although it has a special bitter taste, it is still popular with the public. The industrialization of bitter gourd could be hampered by a lack of genetic resources. The bitter gourd's mitochondrial and chloroplast genomes have not been extensively studied. In the present study, the mitochondrial genome of bitter gourd was sequenced and assembled, and its substructure was investigated. The mitochondrial genome of bitter gourd is 331,440 bp with 24 unique core genes, 16 variable genes, 3 rRNAs, and 23 tRNAs. We identified 134 SSRs and 15 tandem repeats in the entire mitochondrial genome of bitter gourd. Moreover, 402 pairs of repeats with a length greater than or equal to 30 were observed in total. The longest palindromic repeat was 523 bp, and the longest forward repeat was 342 bp. We found 20 homologous DNA fragments in bitter gourd, and the summary insert length was 19,427 bp, accounting for 5.86% of the mitochondrial genome. We predicted a total of 447 potential RNA editing sites in 39 unique PCGs and also discovered that the ccmFN gene has been edited the most often, at 38 times. This study provides a basis for a better understanding and analysis of differences in the evolution and inheritance patterns of cucurbit mitochondrial genomes.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: