Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 6 papers out of 6 papers

Down-regulation of endothelial protein C receptor promotes preeclampsia by affecting actin polymerization.

  • Hao Wang‎ et al.
  • Journal of cellular and molecular medicine‎
  • 2020‎

Preeclampsia is a severe pregnancy-related disease that is found in 3%-5% of pregnancies worldwide and is primarily related to the decreased proliferation and invasion of trophoblast cells and abnormal uterine spiral artery remodelling. However, studies on the pathogenesis of placental trophoblasts are insufficient, and the aetiology of PE remains unclear. Here, we report that endothelial protein C receptor (EPCR), a transmembrane glycoprotein, was down-regulated in placentas from preeclamptic patients. Moreover, lack of EPCR significantly reduced the trophoblast cell proliferation, invasion and tube formation capabilities. Microscale thermophoresis analysis showed that EPCR directly bound to protease-activated receptor 1 (PAR-1), a G protein-coupled receptor. This change resulted in a substantial reduction in active Rac1 and caused excessive actin rearrangement. Our findings reveal a previously unidentified role of EPCR in the regulation of trophoblast proliferation, invasion and tube formation through promotion of actin polymerization, which is required for normal placental development.


Microglial exosome miR-124-3p in hippocampus alleviates cognitive impairment induced by postoperative pain in elderly mice.

  • Erliang Kong‎ et al.
  • Journal of cellular and molecular medicine‎
  • 2024‎

Cognitive impairment induced by postoperative pain severely deteriorates the rehabilitation outcomes in elderly patients. The present study focused on the relationship between microglial exosome miR-124-3p in hippocampus and cognitive impairment induced by postoperative pain. Cognitive impairment model induced by postoperative pain was constructed by intramedullary nail fixation after tibial fracture. Morphine intraperitoneally was carried out for postoperative analgesia. Morris water maze tests were carried out to evaluate the cognitive impairment, while mRNA levels of neurotrophic factors (BDNF, NG) and neurodegenerative biomarker (VILIP-1) in hippocampus were tested by q-PCR. Transmission electron microscope was used to observe the axon degeneration in hippocampus. The levels of pro-inflammatory factors (TNF-α, IL-1β, IL-6), the levels of anti-inflammatory factors (Ym, Arg-1, IL-10) and microglia proliferation marker cyclin D1 in hippocampus were measured to evaluate microglia polarization. Bioinformatics analysis was conducted to identify key exosomes while BV-2 microglia overexpressing exosome miR-124-3p was constructed to observe microglia polarization in vitro experiments. Exogenous miR-124-3p-loaded exosomes were injected into hippocampus in vivo. Postoperative pain induced by intramedullary fixation after tibial fracture was confirmed by decreased mechanical and thermal pain thresholds. Postoperative pain induced cognitive impairment, promoted axon demyelination, decreased BDNF, NG and increased VILIP-1 expressions in hippocampus. Postoperative pain also increased pro-inflammatory factors, cyclin D1 and decreased anti-inflammatory factors in hippocampus. However, these changes were all reversed by morphine analgesia. Bioinformatics analysis identified the critical role of exosome miR-124-3p in cognitive impairment, which was confirmed to be down-regulated in hippocampus of postoperative pain mice. BV-2 microglia overexpressing exosome miR-124-3p showed decreased pro-inflammatory factors, cyclin D1 and increased anti-inflammatory factors. In vivo, stereotactic injection of exogenous miR-124-3p into hippocampus decreased pro-inflammatory factors, cyclin D1 and increased anti-inflammatory factors. The cognitive impairment, axon demyelination, decreased BDNF, NG and increased VILIP-1 expressions in hippocampus were all alleviated by exogenous exosome miR-124-3p. Microglial exosome miR-124-3p in hippocampus alleviates cognitive impairment induced by postoperative pain through microglia polarization in elderly mice.


LncRNA-PCAT1 targeting miR-145-5p promotes TLR4-associated osteogenic differentiation of adipose-derived stem cells.

  • Lingjia Yu‎ et al.
  • Journal of cellular and molecular medicine‎
  • 2018‎

This study was aimed to explore the differential expression of long noncoding RNAs (lncRNA)-PCAT1, miR-145-5p and TLR4 in osteogenic differentiation via the Toll-like receptor (TLR) signalling pathway and consequently determine the potential molecular mechanism. The mRNAs and pathways related to the osteogenic differentiation in human adipose-derived stem cells (hADSCs) were analysed by bioinformatics. The MiRanda and TargetScan database were employed to detect the potential binding sites of miRNAs on lncRNAs and mRNAs. The differential expression of lncRNA-PCAT1, miR-145-5p and TLR4 were detected by qRT-PCR. Rrelated protein expression was analysed by Western blot. The targeted relationships between lncRNA-PCAT1, miR-145-5p and TLR4 were verified by dual-luciferase reporter assay. Alkaline phosphatase (ALP) activity and ARS staining assays were used to measure the impacts exerted by lncRNA PCAT1, miR-145-5p and TLR4 mRNA on osteogenic differentiation. After the induction of osteoblast differentiation, the expression of lncRNA-PCAT1 and TLR4 increased, while the expression of miR-145-5p decreased. Dual-luciferase reporter assay confirmed the targeted relationship between lncRNA-PCAT1, miR-145-5p, and TLR4. LncRNA-PCAT1 negatively regulated miR-145-5p and positively regulated TLR4. Knockdown of lncRNA-PCAT1 or TLR4 decreased the expression of osteogenic differentiation-related proteins, reduced the ALP and ARS levels and the activity of the TLR signalling pathway. MiR-145-5p could reverse the effects of PCAT1 and TLR4 in hADSCs osteogenic differentiation. LncRNA-PCAT1 negatively regulated miR-145-5p, which promoted TLR4 expression to promote osteogenic differentiation by activating the TLR signalling pathway.


Increased UBE2L6 regulated by type 1 interferon as potential marker in TB.

  • Jiao Gao‎ et al.
  • Journal of cellular and molecular medicine‎
  • 2021‎

The aim of this study is to identify potential biomarker of tuberculosis (TB) and determine its function. Differentially expressed mRNAs(DEGs) were selected from a blood database GSE101805, and then, 30 key genes were screened using STING, Cytoscape and further functionally enriched. We then found that only 6 of 13 genes related to ubiquitination (the first in the functional enrichment) were increased significantly. ROC analysis showed that UBE2L6, among 6 genes, had the highest diagnostic value, and then, we found that it also had mild value in differential diagnosis. Moreover, our analysis showed that UBE2L6 may be upregulated by type I interferon, which was further confirmed by us. In addition, we also found that UBE2L6 inhibits the apoptosis of Mycobacterium tuberculosis(Mtb)infected macrophages. Subsequently, we discovered that miR-146a-5p, which may target UBE2L6, is reduced in peripheral blood mononuclear cells (PBMC) and plasma of TB, and it also had certain diagnostic efficiency(AUC=0.791). In brief, we demonstrated that UBE2L6 as well as miR-146a-5p is a potential biomarker for TB and UBE2L6,which may also plays important role in TB by, at least, modulating Mtb-infected macrophage apoptosis.


The ACE2 expression in Sertoli cells and germ cells may cause male reproductive disorder after SARS-CoV-2 infection.

  • Qiaoyan Shen‎ et al.
  • Journal of cellular and molecular medicine‎
  • 2020‎

The serious coronavirus disease-2019 (COVID-19) was first reported in December 2019 in Wuhan, China. COVID-19 is an infectious disease caused by severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2). Angiotensin converting enzyme 2(ACE2) is the cellular receptor for SARS-CoV-2. Considering the critical roles of testicular cells for the transmission of genetic information between generations, we analyzed single-cell RNA-sequencing (scRNA-seq) data of adult human testis. The mRNA expression of ACE2 was expressed in both germ cells and somatic cells. Moreover, the positive rate of ACE2 in testes of infertile men was higher than normal, which indicates that SARS-CoV-2 may cause reproductive disorders through pathway activated by ACE2 and the men with reproductive disorder may easily to be infected by SARS-CoV-2. The expression level of ACE2 was related to the age, and the mid-aged with higher positive rate than young men testicular cells. Taken together, this research provides a biological background of the potential route for infection of SARS-CoV-2 and may enable rapid deciphering male-related reproductive disorders induced by COVID-19.


Downregulation of p300/CBP-associated factor inhibits cardiomyocyte apoptosis via suppression of NF-κB pathway in ischaemia/reperfusion injury rats.

  • Liqiang Qiu‎ et al.
  • Journal of cellular and molecular medicine‎
  • 2021‎

Cardiomyocyte apoptosis is the main reason of cardiac injury after myocardial ischaemia-reperfusion (I/R) injury (MIRI), but the role of p300/CBP-associated factor (PCAF) on myocardial apoptosis in MIRI is unknown. The aim of this study was to investigate the main mechanism of PCAF modulating cardiomyocyte apoptosis in MIRI. The MIRI model was constructed by ligation of the rat left anterior descending coronary vessel for 30 min and reperfusion for 24 h in vivo. H9c2 cells were harvested after induced by hypoxia for 6 h and then reoxygenation for 24 h (H/R) in vitro. The RNA interference PCAF expression adenovirus was transfected into rat myocardium and H9c2 cells. The area of myocardial infarction, cardiac function, myocardial injury marker levels, apoptosis, inflammation and oxidative stress were detected respectively. Both I/R and H/R remarkably upregulated the expression of PCAF, and downregulation of PCAF significantly attenuated myocardial apoptosis, inflammation and oxidative stress caused by I/R and H/R. In addition, downregulation of PCAF inhibited the activation of NF-κB signalling pathway in cardiomyocytes undergoing H/R. Pretreatment of lipopolysaccharide, a NF-κB pathway activator, could blunt these protective effects of PCAF downregulation on myocardial apoptosis in MIRI. These results highlight that downregulation of PCAF could reduce cardiomyocyte apoptosis by inhibiting the NF-κB pathway, thereby providing protection for MIRI. Therefore, PCAF might be a promising target for protecting against cardiac dysfunction induced by MIRI.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: