Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 45 papers

Microbial communities of the upper respiratory tract and otitis media in children.

  • Alison S Laufer‎ et al.
  • mBio‎
  • 2011‎

Streptococcus pneumoniae asymptomatically colonizes the upper respiratory tract of children and is a frequent cause of otitis media. Patterns of microbial colonization likely influence S. pneumoniae colonization and otitis media susceptibility. This study compared microbial communities in children with and without otitis media. Nasal swabs and clinical and demographic data were collected in a cross-sectional study of Philadelphia, PA, children (6 to 78 months) (n=108) during the 2008-2009 winter respiratory virus season. Swabs were cultured for S. pneumoniae. DNA was extracted from the swabs; 16S rRNA gene hypervariable regions (V1 and V2) were PCR amplified and sequenced by Roche/454 Life Sciences pyrosequencing. Microbial communities were described using the Shannon diversity and evenness indices. Principal component analysis (PCA) was used to group microbial community taxa into four factors representing correlated taxa. Of 108 children, 47 (44%) were colonized by S. pneumoniae, and 25 (23%) were diagnosed with otitis media. Microbial communities with S. pneumoniae were significantly less diverse and less even. Two PCA factors were associated with a decreased risk of pneumococcal colonization and otitis media, as follows: one factor included potentially protective flora (Corynebacterium and Dolosigranulum), and the other factor included Propionibacterium, Lactococcus, and Staphylococcus. The remaining two PCA factors were associated with an increased risk of otitis media. One factor included Haemophilus, and the final factor included Actinomyces, Rothia, Neisseria, and Veillonella. Generally, these taxa are not considered otitis media pathogens but may be important in the causal pathway. Increased understanding of upper respiratory tract microbial communities will contribute to the development of otitis media treatment and prevention strategies.


Reducing progression of experimental lupus nephritis via inhibition of the B7/CD28 signaling pathway.

  • Li Huang‎ et al.
  • Molecular medicine reports‎
  • 2015‎

The aim of the present study was to evaluate the effects of the B7/cluster of differentiation (CD)28 signaling pathway on experimental lupus nephritis and examine the molecular mechanism involved by inhibiting the B7/CD28 signaling pathway. A lupus nephritis model in C57BL/6 J mice was induced via intraperitoneal injection of pristane. A recombinant B7‑1 short hairpin RNA (shRNA) lentivirus vector was constructed by synthesis and splicing. A neutralizing mouse anti‑human B7‑1 antibody termed 4E5 was also prepared. The mouse model of lupus nephritis was treated with B7‑1 shRNA and 4E5 via injection through the tail vein. The silencing effects of B7‑1 shRNA lentiviral infection on target molecules were evaluated using immunofluorescence and flow cytometry. The levels of protein in the urine were detected using Albustix test paper each month over 10 months. The concentration of interleukin (IL)‑4 and interferon‑γ in the serum was determined using an ELISA. The immune complex (IC) deposits in the kidney were analyzed using direct immunofluorescence. The results demonstrated that the C57BL/6 J mouse lupus nephritis model was successfully constructed with immune cells activated in the spleen of the mice, increases in the concentration of anti‑nuclear antibody (ANA) and anti‑double stranded DNA antibodies as well as positive IC formation. Following B7‑1 shRNA lentivirus or 4E5 treatment, CD11b+B7‑1+, CD11c+B7‑1+ and CD21+B7‑1+ cells in the spleen of the mice were significantly reduced. The concentration of ANA and IL‑4 in the serum was also decreased. The concentration of urine protein was reduced and it was at its lowest level in the 4E5 early intervention group. It was also revealed that the immunofluorescence intensity of the IC deposits was weak in the 4E5 early intervention group. In conclusion, inhibiting the B7‑1/CD28 signaling pathway is able to alleviate experimental lupus nephritis and provides an experimental basis for the therapeutic use of blocking the B7‑1/CD28 signaling pathway in human lupus nephritis and other autoimmune disorders.


The Lupus Susceptibility Locus Sgp3 Encodes the Suppressor of Endogenous Retrovirus Expression SNERV.

  • Rebecca S Treger‎ et al.
  • Immunity‎
  • 2019‎

Elevated endogenous retrovirus (ERV) transcription and anti-ERV antibody reactivity are implicated in lupus pathogenesis. Overproduction of non-ecotropic ERV (NEERV) envelope glycoprotein gp70 and resultant nephritis occur in lupus-prone mice, but whether NEERV mis-expression contributes to lupus etiology is unclear. Here we identified suppressor of NEERV (Snerv) 1 and 2, Krüppel-associated box zinc-finger proteins (KRAB-ZFPs) that repressed NEERV by binding the NEERV long terminal repeat to recruit the transcriptional regulator KAP1. Germline Snerv1/Snerv2 deletion increased activating chromatin modifications, transcription, and gp70 expression from NEERV loci. F1 crosses of lupus-prone New Zealand Black (NZB) and 129 mice to Snerv1/Snerv2-/- mice failed to restore NEERV repression, demonstrating that loss of SNERV underlies the lupus autoantigen gp70 overproduction that promotes nephritis in susceptible mice and that SNERV encodes for Sgp3 (in NZB mice) and Gv-1 loci (in 129 mice). Increased ERV expression in lupus patients inversely correlated with three putative ERV-suppressing KRAB-ZFPs, suggesting that loss of KRAB-ZFP-mediated ERV control may contribute to human lupus pathogenesis.


Regional Differences in Airway Epithelial Cells Reveal Tradeoff between Defense against Oxidative Stress and Defense against Rhinovirus.

  • Valia T Mihaylova‎ et al.
  • Cell reports‎
  • 2018‎

Rhinovirus is a leading cause of acute respiratory infections and asthma attacks, but infections are also frequently cleared from the nasal mucosa without causing symptoms. We sought to better understand host defense against rhinovirus by investigating antiviral defense in primary human nasal and bronchial airway epithelial cells cultured ex vivo. Surprisingly, upon rhinovirus infection or RIG-I stimulation, nasal-derived epithelial cells exhibited much more robust antiviral responses than bronchial-derived cells. Conversely, RIG-I stimulation triggered more robust activation of the NRF2-dependent oxidative stress response in bronchial cells compared to nasal cells. NRF2 activation dampened epithelial antiviral responses, whereas NRF2 knockdown enhanced antiviral responses and was protective during rhinovirus infection. These findings demonstrate a tradeoff in epithelial defense against distinct types of airway damage, namely, viral versus oxidative, and reveal differential calibration of defense responses in cells derived from different airway microenvironments.


Forward genetics identifies Kdf1/1810019J16Rik as an essential regulator of the proliferation-differentiation decision in epidermal progenitor cells.

  • Sunjin Lee‎ et al.
  • Developmental biology‎
  • 2013‎

Cell fate decisions during embryogenesis and adult life govern tissue formation, homeostasis and repair. Two key decisions that must be tightly coordinated are proliferation and differentiation. Overproliferation can lead to hyperplasia or tumor formation while premature differentiation can result in a depletion of proliferating cells and organ failure. Maintaining this balance is especially important in tissues that undergo rapid turnover like skin however, despite recent advances, the genetic mechanisms that balance cell differentiation and proliferation are still unclear. In an unbiased genetic screen to identify genes affecting early development, we identified an essential regulator of the proliferation-differentiation balance in epidermal progenitor cells, the Keratinocyte differentiation factor 1 (Kdf1; 1810019J16Rik) gene. Kdf1 is expressed in epidermal cells from early stages of epidermis formation through adulthood. Specifically, Kdf1 is expressed both in epidermal progenitor cells where it acts to curb the rate of proliferation as well as in their progeny where it is required to block proliferation and promote differentiation. Consequently, Kdf1 mutants display both uncontrolled cell proliferation in the epidermis and failure to develop terminal fates. Our findings reveal a dual role for the novel gene Kdf1 both as a repressive signal for progenitor cell proliferation through its inhibition of p63 and a strong inductive signal for terminal differentiation through its interaction with the cell cycle regulator Stratifin.


Negligible impact of rare autoimmune-locus coding-region variants on missing heritability.

  • Karen A Hunt‎ et al.
  • Nature‎
  • 2013‎

Genome-wide association studies (GWAS) have identified common variants of modest-effect size at hundreds of loci for common autoimmune diseases; however, a substantial fraction of heritability remains unexplained, to which rare variants may contribute. To discover rare variants and test them for association with a phenotype, most studies re-sequence a small initial sample size and then genotype the discovered variants in a larger sample set. This approach fails to analyse a large fraction of the rare variants present in the entire sample set. Here we perform simultaneous amplicon-sequencing-based variant discovery and genotyping for coding exons of 25 GWAS risk genes in 41,911 UK residents of white European origin, comprising 24,892 subjects with six autoimmune disease phenotypes and 17,019 controls, and show that rare coding-region variants at known loci have a negligible role in common autoimmune disease susceptibility. These results do not support the rare-variant synthetic genome-wide-association hypothesis (in which unobserved rare causal variants lead to association detected at common tag variants). Many known autoimmune disease risk loci contain multiple, independently associated, common and low-frequency variants, and so genes at these loci are a priori stronger candidates for harbouring rare coding-region variants than other genes. Our data indicate that the missing heritability for common autoimmune diseases may not be attributable to the rare coding-region variant portion of the allelic spectrum, but perhaps, as others have proposed, may be a result of many common-variant loci of weak effect.


Alleles of a polymorphic ETV6 binding site in DCDC2 confer risk of reading and language impairment.

  • Natalie R Powers‎ et al.
  • American journal of human genetics‎
  • 2013‎

Reading disability (RD) and language impairment (LI) are common learning disabilities that make acquisition and utilization of reading and verbal language skills, respectively, difficult for affected individuals. Both disorders have a substantial genetic component with complex inheritance. Despite decades of study, reading and language, like many other complex traits, consistently evade identification of causative and functional variants. We previously identified a putative functional risk variant, named BV677278 for its GenBank accession number, for RD in DCDC2. This variant consists of an intronic microdeletion and a highly polymorphic short tandem repeat (STR) within its breakpoints. We have also shown this STR to bind to an unknown nuclear protein with high specificity. Here, we replicate BV677278's association with RD, expand its association to LI, identify the BV677278-binding protein as the transcription factor ETV6, and provide compelling genetic evidence that BV677278 is a regulatory element that influences reading and language skills. We also provide evidence that BV677278 interacts nonadditively with KIAA0319, an RD-associated gene, to adversely affect several reading and cognitive phenotypes. On the basis of these data, we propose a new name for BV677278: "READ1" or "regulatory element associated with dyslexia 1."


ERVmap analysis reveals genome-wide transcription of human endogenous retroviruses.

  • Maria Tokuyama‎ et al.
  • Proceedings of the National Academy of Sciences of the United States of America‎
  • 2018‎

Endogenous retroviruses (ERVs) are integrated retroviral elements that make up 8% of the human genome. However, the impact of ERVs on human health and disease is not well understood. While select ERVs have been implicated in diseases, including autoimmune disease and cancer, the lack of tools to analyze genome-wide, locus-specific expression of proviral autonomous ERVs has hampered the progress in the field. Here we describe a method called ERVmap, consisting of an annotated database of 3,220 human proviral ERVs and a pipeline that allows for locus-specific genome-wide identification of proviral ERVs that are transcribed based on RNA-sequencing data, and provide examples of the utility of this tool. Using ERVmap, we revealed cell-type-specific ERV expression patterns in commonly used cell lines as well as in primary cells. We identified 124 unique ERV loci that are significantly elevated in the peripheral blood mononuclear cells of patients with systemic lupus erythematosus that represent an IFN-independent signature. Finally, we identified additional tumor-associated ERVs that correlate with cytolytic activity represented by granzyme and perforin expression in breast cancer tissue samples. The open-source code of ERVmap and the accompanied web tool are made publicly available to quantify proviral ERVs in RNA-sequencing data with ease. Use of ERVmap across a range of diseases and experimental conditions has the potential to uncover novel disease-associated antigens and effectors involved in human health that is currently missed by focusing on protein-coding sequences.


Dolosigranulum pigrum Cooperation and Competition in Human Nasal Microbiota.

  • Silvio D Brugger‎ et al.
  • mSphere‎
  • 2020‎

Multiple epidemiological studies identify Dolosigranulum pigrum as a candidate beneficial bacterium based on its positive association with health, including negative associations with nasal/nasopharyngeal colonization by the pathogenic species Staphylococcus aureus and Streptococcus pneumoniae Using a multipronged approach to gain new insights into D. pigrum function, we observed phenotypic interactions and predictions of genomic capacity that support the idea of a role for microbe-microbe interactions involving D. pigrum in shaping the composition of human nasal microbiota. We identified in vivo community-level and in vitro phenotypic cooperation by specific nasal Corynebacterium species. Also, D. pigrum inhibited S. aureus growth in vitro, whereas robust inhibition of S. pneumoniae required both D. pigrum and a nasal Corynebacterium together. D. pigrum l-lactic acid production was insufficient to account for these inhibitions. Genomic analysis of 11 strains revealed that D. pigrum has a small genome (average 1.86 Mb) and multiple predicted auxotrophies consistent with D. pigrum relying on its human host and on cocolonizing bacteria for key nutrients. Further, the accessory genome of D. pigrum harbored a diverse repertoire of biosynthetic gene clusters, some of which may have a role in microbe-microbe interactions. These new insights into D. pigrum's functions advance the field from compositional analysis to genomic and phenotypic experimentation on a potentially beneficial bacterial resident of the human upper respiratory tract and lay the foundation for future animal and clinical experiments.IMPORTANCEStaphylococcus aureus and Streptococcus pneumoniae infections cause significant morbidity and mortality in humans. For both, nasal colonization is a risk factor for infection. Studies of nasal microbiota identify Dolosigranulum pigrum as a benign bacterium present when adults are free of S. aureus or when children are free of S. pneumoniae Here, we validated these in vivo associations with functional assays. We found that D. pigrum inhibited S. aureusin vitro and, together with a specific nasal Corynebacterium species, also inhibited S. pneumoniae Furthermore, genomic analysis of D. pigrum indicated that it must obtain key nutrients from other nasal bacteria or from humans. These phenotypic interactions support the idea of a role for microbe-microbe interactions in shaping the composition of human nasal microbiota and implicate D. pigrum as a mutualist of humans. These findings support the feasibility of future development of microbe-targeted interventions to reshape nasal microbiota composition to exclude S. aureus and/or S. pneumoniae.


A surface protein-imprinted biosensor based on boronate affinity for the detection of anti-human immunoglobulin G.

  • Zixuan Liu‎ et al.
  • Mikrochimica acta‎
  • 2022‎

A surface protein-imprinted biosensor was constructed on a screen-printed carbon electrode (SPCE) for the detection of anti-human immunoglobulin G (anti-IgG). The SPCE was successively decorated with aminated graphene (NH2-G) and gold nanobipyramids (AuNBs) for signal amplification. Then 4-mercaptophenylboric acid (4-MPBA) was covalently anchored to the surface of AuNBs for capturing anti-IgG template through boronate affinity binding. The decorated SPCE was then deposited with an imprinting layer generated by the electropolymerization of pyrrole. After removal of the anti-IgG template by the dissociation of the boronate ester in an acidic solution, three-dimensional (3D) cavities complementary to the anti-IgG template were formed in the imprinting layer of polypyrrole (PPy). The molecularly imprinted polymers (MIP)-based biosensor was used for the detection of anti-IgG, exhibiting a wide linear range from 0.05 to 100 ng mL-1 and a low limit of detection of 0.017 ng mL-1 (S/N = 3). In addition, the MIP-based anti-IgG biosensor also shows high selectivity, reproducibility and stability. Finally, the practicability of the fabricated anti-IgG biosensor was demonstrated by accurate determination of anti-IgG in serum sample.


Construction of a pH- and near-infrared irradiation-responsive nanoplatform for chemo-photothermal therapy.

  • Qiang Gao‎ et al.
  • International journal of pharmaceutics‎
  • 2021‎

Au nanoclusters, decorated with graphene quantum dots (GQDs), were obtained through photocatalytic reduction of AuCl43- by UV irradiation, and then cytarabine (Cyt) was loaded to the Au/GQDs via charge-dipole interactions. Mercaptopropionic acid (MPA) was anchored to the Cyt-loaded Au/GQDs through the formation of Au-S bond, which was further encapsulated by polyethyleneimine (PEI) via charge-dipole interactions. The delivery of Cyt from the quaternary complex (Au/GQDs/MPA/PEI) is pH-sensitive and can be modulated by near-infrared (NIR) irradiation. The results of cell viability test indicate that the developed nanoplatform can be used for chemo-photothermal combination therapy of cancer cells, and the efficacy of chemo-photothermal combination therapy is significantly higher than that of the single mode of photothermal therapy (PTT) or chemotherapy.


A novel monoclonal antibody against human B7-1 protects against chronic graft-vs.-host disease in a murine lupus nephritis model.

  • Lijun Shen‎ et al.
  • Experimental and therapeutic medicine‎
  • 2020‎

Lupus nephritis (LN) is the most common complication that causes mortality in patients with systemic lupus erythematosus. The B7-1/B7-2 and CD28/cytotoxic T-lymphocyte associated protein 4 co-stimulatory pathway serves a key role in autoimmune disease and organ transplantation. The aim of the present study was to generate and characterize a monoclonal antibody (mAb; clone 4E5) against human B7-1 and to investigate its potential use for the treatment of LN. The results demonstrated that the 4E5 mAb was successfully generated and able to recognize both human and mouse B7-1. After injection of this mAb into a mouse model with chronic graft-vs.-host disease (cGVHD)-induced lupus-like disease, the expression of CD21, CD23, CD80 and CD86 on B220+ B-cells in the spleen, and the concentrations of serum autoantibodies and urine protein, were decreased. Direct immunofluorescence analysis of the kidneys revealed that immunofluorescence of immune complex deposits was weaker in the 4E5-treated mice and electron microscopy analyses of renal tissues indicated that pathological injury of the kidneys of 4E5-treated mice was decreased compared with that in the model control mice. The results of the present study demonstrated that inhibition of the B7-1/CD28 co-stimulatory signaling pathway with the 4E5 mAb may represent a promising strategy to decelerate the progression of LN that is induced by cGVHD with potential for use in the treatment of other autoimmune diseases.


Generation and characterization of a humanized anti-IL-17A rabbit monoclonal antibody.

  • Wei Chen‎ et al.
  • Protein expression and purification‎
  • 2021‎

Interleukin-17A (IL-17A) produced by Th17 cells, contributes to the pathogenesis of various autoimmune diseases by stimulating the release of cytokines and chemokines and its regulation. Anti-IL-17A antibody which blocks the function of IL-17A has been proved to be an effective treatment of autoimmune disease. The aim of our study was to generate a potential humanized anti-IL-17A therapeutic monoclonal antibody (mAb) through a comprehensive panel of in vitro and in vivo biological activity studies, as well as physicochemical characterization. HZD37-5, a humanized monoclonal antibody specifically recognizing N78 loci of IL-17A, binds to human and rhesus monkeys, blocks IL-17 induced signal transduction and the release of IL-6, IL-8, CXCL-1 and G-GSF. In an in vivo efficacy mouse model, HZD37-5 significantly inhibited human IL-17A induced-keratinocyte chemoattractant (KC) secretion in a dose-dependent manner. The pharmacokinetics (PK) study result of HZD37-5 in rhesus monkeys indicated that HZD37-5 had favorable PK characteristics with limited distribution (78.0-78.8 ml/kg), slow elimination (5.00-6.45 ml/day/kg), long half-life (9.1-10.7 days) and high bioavailability (103%) following a single IV or SC dose at 1.5 mg/kg. These findings provided a comprehensive preclinical characterization of HZD37-5 and supported that it may be developed as a potential therapeutic for the treatment of autoimmune diseases, including psoriasis, psoriatic arthritis, axial spondyloarthritis, etc.


Comparison of bacterial and archaeal communities in two fertilizer doses and soil compartments under continuous cultivation system of garlic.

  • Jing Zhou‎ et al.
  • PloS one‎
  • 2021‎

Soil microbial communities are affected by interactions between agricultural management (e.g., fertilizer) and soil compartment, but few studies have considered combinations of these factors. We compared the microbial abundance, diversity and community structure in two fertilizer dose (high vs. low NPK) and soil compartment (rhizosphere vs. bulk soils) under 6-year fertilization regimes in a continuous garlic cropping system in China. The soil contents of NO3- and available K were significantly higher in bulk soil in the high-NPK. The 16S rRNA gene-based bacterial and archaeal abundances were positively affected by both the fertilizer dose and soil compartment, and were higher in the high-NPK fertilization and rhizosphere samples. High-NPK fertilization increased the Shannon index and decreased bacterial and archaeal richness, whereas the evenness was marginally positively affected by both the fertilizer dose and soil compartment. Soil compartment exerted a greater effect on the bacterial and archaeal community structure than did the fertilization dose, as demonstrated by both the nonmetric multidimensional scaling and redundancy analysis results. We found that rhizosphere effects significantly distinguished 12 dominant classes of bacterial and archaeal communities, whereas the fertilizer dose significantly identified four dominant classes. In particular, a Linear Effect Size analysis showed that some taxa, including Alphaproteobacteria, Rhizobiales, Xanthomonadaceae and Flavobacterium, were enriched in the garlic rhizosphere of the high-NPK fertilizer samples. Overall, the fertilizer dose interacted with soil compartment to shape the bacterial and archaeal community composition, abundance, and biodiversity in the garlic rhizosphere. These results provide an important basis for further understanding adaptive garlic-microbe feedback, reframing roots as a significant moderating influence in agricultural management and shaping the microbial community.


Genomic evidence of sex chromosome aneuploidy and infection-associated genotypes in the tsetse fly Glossina fuscipes, the major vector of African trypanosomiasis in Uganda.

  • Norah P Saarman‎ et al.
  • Infection, genetics and evolution : journal of molecular epidemiology and evolutionary genetics in infectious diseases‎
  • 2023‎

The primary vector of the trypanosome parasite causing human and animal African trypanosomiasis in Uganda is the riverine tsetse fly Glossina fuscipes fuscipes (Gff). Our study improved the Gff genome assembly with whole genome 10× Chromium sequencing of a lab reared pupae, identified autosomal versus sex-chromosomal regions of the genome with ddRAD-seq data from 627 field caught Gff, and identified SNPs associated with trypanosome infection with genome-wide association (GWA) analysis in a subset of 351 flies. Results from 10× Chromium sequencing greatly improved Gff genome assembly metrics and assigned a full third of the genome to the sex chromosome. Results from ddRAD-seq suggested possible sex-chromosome aneuploidy in Gff and identified a single autosomal SNP to be highly associated with trypanosome infection. The top associated SNP was ∼1100 bp upstream of the gene lecithin cholesterol acyltransferase (LCAT), an important component of the molecular pathway that initiates trypanosome lysis and protection in mammals. Results suggest that there may be naturally occurring genetic variation in Gff in genomic regions in linkage disequilibrium with LCAT that can protect against trypanosome infection, thereby paving the way for targeted research into novel vector control strategies that can promote parasite resistance in natural populations.


MU2A--reconciling the genome and transcriptome to determine the effects of base substitutions.

  • Vijay Garla‎ et al.
  • Bioinformatics (Oxford, England)‎
  • 2011‎

Next-generation sequencing technologies enable the identification of sequence variation in the genome and transcriptome. Differences between the reference genome and transcript libraries complicate the determination of the effect of genomic sequence variants on protein products; similarly, these differences complicate the mapping of sequence variants found in transcripts to their respective genomic position. We have developed MU2A, a publicly available web service for variant annotation that reconciles differences between the genome and transcriptome, enabling the rapid and accurate determination of the effects of genomic variants on protein products, and the mapping of variants detected in transcripts to genomic coordinates. The MU2A web service is available at http://krauthammerlab.med.yale.edu/mu2a. We have released MU2A as open source, available at http://code.google.com/p/mu2a/.


Streptococcus pneumoniae clonal complex 199: genetic diversity and tissue-specific virulence.

  • Jonathan C Thomas‎ et al.
  • PloS one‎
  • 2011‎

Streptococcus pneumoniae is an important cause of otitis media and invasive disease. Since introduction of the heptavalent pneumococcal conjugate vaccine, there has been an increase in replacement disease due to serotype 19A clonal complex (CC)199 isolates. The goals of this study were to 1) describe genetic diversity among nineteen CC199 isolates from carriage, middle ear, blood, and cerebrospinal fluid, 2) compare CC199 19A (n = 3) and 15B/C (n = 2) isolates in the chinchilla model for pneumococcal disease, and 3) identify accessory genes associated with tissue-specific disease among a larger collection of S. pneumoniae isolates. CC199 isolates were analyzed by comparative genome hybridization. One hundred and twenty-seven genes were variably present. The CC199 phylogeny split into two main clades, one comprised predominantly of carriage isolates and another of disease isolates. Ability to colonize and cause disease did not differ by serotype in the chinchilla model. However, isolates from the disease clade were associated with faster time to bacteremia compared to carriage clade isolates. One 19A isolate exhibited hypervirulence. Twelve tissue-specific genes/regions were identified by correspondence analysis. After screening a diverse collection of 326 isolates, spr0282 was associated with carriage. Four genes/regions, SP0163, SP0463, SPN05002 and RD8a were associated with middle ear isolates. SPN05002 also associated with blood and CSF, while RD8a associated with blood isolates. The hypervirulent isolate's genome was sequenced using the Solexa paired-end sequencing platform and compared to that of a reference serotype 19A isolate, revealing the presence of a novel 20 kb region with sequence similarity to bacteriophage genes. Genetic factors other than serotype may modulate virulence potential in CC199. These studies have implications for the long-term effectiveness of conjugate vaccines. Ideally, future vaccines would target common proteins to effectively reduce carriage and disease in the vaccinated population.


An international effort towards developing standards for best practices in analysis, interpretation and reporting of clinical genome sequencing results in the CLARITY Challenge.

  • Catherine A Brownstein‎ et al.
  • Genome biology‎
  • 2014‎

There is tremendous potential for genome sequencing to improve clinical diagnosis and care once it becomes routinely accessible, but this will require formalizing research methods into clinical best practices in the areas of sequence data generation, analysis, interpretation and reporting. The CLARITY Challenge was designed to spur convergence in methods for diagnosing genetic disease starting from clinical case history and genome sequencing data. DNA samples were obtained from three families with heritable genetic disorders and genomic sequence data were donated by sequencing platform vendors. The challenge was to analyze and interpret these data with the goals of identifying disease-causing variants and reporting the findings in a clinically useful format. Participating contestant groups were solicited broadly, and an independent panel of judges evaluated their performance.


Intratumoral delivery of RIG-I agonist SLR14 induces robust antitumor responses.

  • Xiaodong Jiang‎ et al.
  • The Journal of experimental medicine‎
  • 2019‎

Cytosolic nucleic acid-sensing pathways can be triggered to enhance immune response to cancer. In this study, we tested the antitumor activity of a unique RIG-I agonist, stem loop RNA (SLR) 14. In the immunogenic tumor models, we observed significant tumor growth delay and an extended survival in SLR14-treated mice. SLR14 also greatly improved antitumor efficacy of anti-PD1 antibody over single-agent treatment. SLR14 was mainly taken up by CD11b+ myeloid cells in the tumor microenvironment, and many genes associated with immune defense were significantly up-regulated after treatment, accompanied by increase in the number of CD8+ T lymphocytes, NK cells, and CD11b+ cells in SLR14-treated tumors. Strikingly, SLR14 dramatically inhibited nonimmunogenic B16 tumor growth, and the cured mice developed an immune memory. Furthermore, a systemic antitumor response was observed in both bilateral and tumor metastasis models. Collectively, our results demonstrate that SLR14 is a promising therapeutic RIG-I agonist for cancer treatment, either alone or in combination with existing immunotherapies.


Glycerol phosphate shuttle enzyme GPD2 regulates macrophage inflammatory responses.

  • P Kent Langston‎ et al.
  • Nature immunology‎
  • 2019‎

Macrophages are activated during microbial infection to coordinate inflammatory responses and host defense. Here we find that in macrophages activated by bacterial lipopolysaccharide (LPS), mitochondrial glycerol 3-phosphate dehydrogenase (GPD2) regulates glucose oxidation to drive inflammatory responses. GPD2, a component of the glycerol phosphate shuttle, boosts glucose oxidation to fuel the production of acetyl coenzyme A, acetylation of histones and induction of genes encoding inflammatory mediators. While acute exposure to LPS drives macrophage activation, prolonged exposure to LPS triggers tolerance to LPS, where macrophages induce immunosuppression to limit the detrimental effects of sustained inflammation. The shift in the inflammatory response is modulated by GPD2, which coordinates a shutdown of oxidative metabolism; this limits the availability of acetyl coenzyme A for histone acetylation at genes encoding inflammatory mediators and thus contributes to the suppression of inflammatory responses. Therefore, GPD2 and the glycerol phosphate shuttle integrate the extent of microbial stimulation with glucose oxidation to balance the beneficial and detrimental effects of the inflammatory response.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: