Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 15 papers out of 15 papers

mTORC1 and mTORC2 Kinase Signaling and Glucose Metabolism Drive Follicular Helper T Cell Differentiation.

  • Hu Zeng‎ et al.
  • Immunity‎
  • 2016‎

Follicular helper T (Tfh) cells are crucial for germinal center (GC) formation and humoral adaptive immunity. Mechanisms underlying Tfh cell differentiation in peripheral and mucosal lymphoid organs are incompletely understood. We report here that mTOR kinase complexes 1 and 2 (mTORC1 and mTORC2) are essential for Tfh cell differentiation and GC reaction under steady state and after antigen immunization and viral infection. Loss of mTORC1 and mTORC2 in T cells exerted distinct effects on Tfh cell signature gene expression, whereas increased mTOR activity promoted Tfh responses. Deficiency of mTORC2 impaired CD4(+) T cell accumulation and immunoglobulin A production and aberrantly induced the transcription factor Foxo1. Mechanistically, the costimulatory molecule ICOS activated mTORC1 and mTORC2 to drive glycolysis and lipogenesis, and glucose transporter 1-mediated glucose metabolism promoted Tfh cell responses. Altogether, mTOR acts as a central node in Tfh cells by linking immune signals to anabolic metabolism and transcriptional activity.


Potential killers exposed: tracking endogenous influenza-specific CD8+ T cells.

  • Rachael Keating‎ et al.
  • Immunology and cell biology‎
  • 2018‎

Current influenza A virus (IAV) vaccines stimulate antibody responses that are directed against variable regions of the virus, and are therefore ineffective against divergent strains. As CD8+ T cells target the highly conserved, internal IAV proteins, they have the potential to increase heterosubtypic immunity. Early T-cell priming events influence lasting memory, which is required for long-term protection. However, the early responding, IAV-specific cells are difficult to monitor because of their low frequencies. Here, we tracked the dissemination of endogenous IAV-specific CD8+ T cells during the initial phases of the immune response following IAV infection. We exposed a significant population of recently activated, CD25+ CD43+ IAV-specific T cells that were not detected by tetramer staining. By tracking this population, we found that initial T-cell priming occurred in the mediastinal lymph nodes, which gave rise to the most expansive IAV-specific CD8+ T-cell population. Subsequently, IAV-specific CD8+ T cells dispersed to the bronchoalveolar lavage and blood, followed by spleen and liver, and finally to the lung. These data provide important insight into the priming and tissue dispersion of an endogenous CD8+ T-cell response. Importantly, the CD25+ CD43+ phenotype identifies an inclusive population of early responding CD8+ T cells, which may provide insight into TCR repertoire selection and expansion. A better understanding of this response is critical for designing improved vaccines that target CD8+ T cells.


Dissemination mechanisms of NDM genes in hospitalized patients.

  • Yuting Zhai‎ et al.
  • JAC-antimicrobial resistance‎
  • 2021‎

NDM-producing Enterobacteriaceae are a major clinical concern worldwide. We characterized NDM-positive pathogens isolated from patients and assessed the dissemination patterns of the bla NDM genes in a hospital setting.


Characterization of the intrarenal renin-angiotensin system in cats with naturally occurring chronic kidney disease.

  • Bianca N Lourenço‎ et al.
  • Journal of veterinary internal medicine‎
  • 2022‎

The role of the renin-angiotensin-aldosterone system in cats with chronic kidney disease (CKD) is incompletely understood.


The NLRP12 Sensor Negatively Regulates Autoinflammatory Disease by Modulating Interleukin-4 Production in T Cells.

  • John R Lukens‎ et al.
  • Immunity‎
  • 2015‎

Missense mutations in the nucleotide-binding oligomerization domain (NOD)-like receptor pyrin domain containing family of gene 12 (Nlrp12) are associated with periodic fever syndromes and atopic dermatitis in humans. Here, we have demonstrated a crucial role for NLRP12 in negatively regulating pathogenic T cell responses. Nlrp12(-/-) mice responded to antigen immunization with hyperinflammatory T cell responses. Furthermore, transfer of CD4(+)CD45RB(hi)Nlrp12(-/-) T cells into immunodeficient mice led to more severe colitis and atopic dermatitis. NLRP12 deficiency did not, however, cause exacerbated ascending paralysis during experimental autoimmune encephalomyelitis (EAE); instead, Nlrp12(-/-) mice developed atypical neuroinflammatory symptoms that were characterized by ataxia and loss of balance. Enhanced T-cell-mediated interleukin-4 (IL-4) production promotes the development of atypical EAE disease in Nlrp12(-/-) mice. These results define an unexpected role for NLRP12 as an intrinsic negative regulator of T-cell-mediated immunity and identify altered NF-κB regulation and IL-4 production as key mediators of NLRP12-associated disease.


Evaluation of profibrotic gene transcription in renal tissues from cats with naturally occurring chronic kidney disease.

  • Bianca N Lourenço‎ et al.
  • Journal of veterinary internal medicine‎
  • 2020‎

Increased gene transcription of hypoxia-induced mediators of fibrosis in renal tissue has been identified in experimentally induced, ischemic chronic kidney disease (CKD).


IRGB10 Liberates Bacterial Ligands for Sensing by the AIM2 and Caspase-11-NLRP3 Inflammasomes.

  • Si Ming Man‎ et al.
  • Cell‎
  • 2016‎

The inflammasome is an intracellular signaling complex, which on recognition of pathogens and physiological aberration, drives activation of caspase-1, pyroptosis, and the release of the pro-inflammatory cytokines IL-1β and IL-18. Bacterial ligands must secure entry into the cytoplasm to activate inflammasomes; however, the mechanisms by which concealed ligands are liberated in the cytoplasm have remained unclear. Here, we showed that the interferon-inducible protein IRGB10 is essential for activation of the DNA-sensing AIM2 inflammasome by Francisella novicida and contributed to the activation of the LPS-sensing caspase-11 and NLRP3 inflammasome by Gram-negative bacteria. IRGB10 directly targeted cytoplasmic bacteria through a mechanism requiring guanylate-binding proteins. Localization of IRGB10 to the bacterial cell membrane compromised bacterial structural integrity and mediated cytosolic release of ligands for recognition by inflammasome sensors. Overall, our results reveal IRGB10 as part of a conserved signaling hub at the interface between cell-autonomous immunity and innate immune sensing pathways.


Acute IL-4 Governs Pathogenic T Cell Responses during Leishmania major Infection.

  • Barun Poudel‎ et al.
  • ImmunoHorizons‎
  • 2020‎

Leishmania spp. infection is a global health problem affecting more than 2 million people every year with 300 million at risk worldwide. It is well established that a dominant Th1 response (IFN-γ, a hallmark Th1 cytokine) provides resistance, whereas a dominant Th2 response (IL-4, a hallmark Th2 cytokine) confers susceptibility during infection. Given the important role of IL-4 during L. major infection, we used IL-4-neutralizing Abs to investigate the cellular and molecular events regulated by IL-4 signaling. As previously published, neutralization of IL-4 in L. major-infected BALB/c mice (a Leishmania susceptible strain) provided protection when compared with control L. major-infected BALB/c mice. Despite this protection, IFN-γ production by T cells was dramatically reduced. Temporal neutralization of IL-4 revealed that acute IL-4 produced within the first days of infection is critical for not only programming IL-4-producing Th2 CD4+ T cells, but for promoting IFN-γ produced by CD8+ T cells. Mechanistically, IL-4 signaling enhances anti-CD3-induced Tbet and IFN-γ expression in both CD4+ and CD8+ T cells. Given the pathogenic role of IFN-γ-producing CD8+ T cells, our data suggest that IL-4 promotes cutaneous leishmaniasis pathology by not only promoting Th2 immune responses but also pathogenic CD8+ T cell responses. Our studies open new research grounds to investigate the unsuspected role of IL-4 in regulating both Th1 and Th2 responses.


Generation of a lentiviral vector producer cell clone for human Wiskott-Aldrich syndrome gene therapy.

  • Matthew M Wielgosz‎ et al.
  • Molecular therapy. Methods & clinical development‎
  • 2015‎

We have developed a producer cell line that generates lentiviral vector particles of high titer. The vector encodes the Wiskott-Aldrich syndrome (WAS) protein. An insulator element has been added to the long terminal repeats of the integrated vector to limit proto-oncogene activation. The vector provides high-level, stable expression of WAS protein in transduced murine and human hematopoietic cells. We have also developed a monoclonal antibody specific for intracellular WAS protein. This antibody has been used to monitor expression in blood and bone marrow cells after transfer into lineage negative bone marrow cells from WAS mice and in a WAS negative human B-cell line. Persistent expression of the transgene has been observed in transduced murine cells 12-20 weeks following transplantation. The producer cell line and the specific monoclonal antibody will facilitate the development of a clinical protocol for gene transfer into WAS protein deficient stem cells.


BOK Is a Non-canonical BCL-2 Family Effector of Apoptosis Regulated by ER-Associated Degradation.

  • Fabien Llambi‎ et al.
  • Cell‎
  • 2016‎

The mitochondrial pathway of apoptosis is initiated by mitochondrial outer membrane permeabilization (MOMP). The BCL-2 family effectors BAX and BAK are thought to be absolutely required for this process. Here, we report that BCL-2 ovarian killer (BOK) is a bona fide yet unconventional effector of MOMP that can trigger apoptosis in the absence of both BAX and BAK. However, unlike the canonical effectors, BOK appears to be constitutively active and unresponsive to antagonistic effects of the antiapoptotic BCL-2 proteins. Rather, BOK is controlled at the level of protein stability by components of the endoplasmic reticulum (ER)-associated degradation pathway. BOK is ubiquitylated by the AMFR/gp78 E3 ubiquitin ligase complex and targeted for proteasomal degradation in a VCP/p97-dependent manner, which allows survival of the cell. When proteasome function, VCP, or gp78 activity is compromised, BOK is stabilized to induce MOMP and apoptosis independently of other BCL-2 proteins.


The kinase mTOR modulates the antibody response to provide cross-protective immunity to lethal infection with influenza virus.

  • Rachael Keating‎ et al.
  • Nature immunology‎
  • 2013‎

Highly pathogenic avian influenza viruses pose a continuing global threat. Current vaccines will not protect against newly evolved pandemic viruses. The creation of 'universal' vaccines has been unsuccessful because the immunological mechanisms that promote heterosubtypic immunity are incompletely defined. We found here that rapamycin, an immunosuppressive drug that inhibits the kinase mTOR, promoted cross-strain protection against lethal infection with influenza virus of various subtypes when administered during immunization with influenza virus subtype H3N2. Rapamycin reduced the formation of germinal centers and inhibited class switching in B cells, which yielded a unique repertoire of antibodies that mediated heterosubtypic protection. Our data established a requirement for the mTORC1 complex in B cell class switching and demonstrated that rapamycin skewed the antibody response away from high-affinity variant epitopes and targeted more conserved elements of hemagglutinin. Our findings have implications for the design of a vaccine against influenza virus.


Pre-existing humoral immunity to human common cold coronaviruses negatively impacts the protective SARS-CoV-2 antibody response.

  • Chun-Yang Lin‎ et al.
  • Cell host & microbe‎
  • 2022‎

SARS-CoV-2 infection causes diverse outcomes ranging from asymptomatic infection to respiratory distress and death. A major unresolved question is whether prior immunity to endemic, human common cold coronaviruses (hCCCoVs) impacts susceptibility to SARS-CoV-2 infection or immunity following infection and vaccination. Therefore, we analyzed samples from the same individuals before and after SARS-CoV-2 infection or vaccination. We found hCCCoV antibody levels increase after SARS-CoV-2 exposure, demonstrating cross-reactivity. However, a case-control study indicates that baseline hCCCoV antibody levels are not associated with protection against SARS-CoV-2 infection. Rather, higher magnitudes of pre-existing betacoronavirus antibodies correlate with more SARS-CoV-2 antibodies following infection, an indicator of greater disease severity. Additionally, immunization with hCCCoV spike proteins before SARS-CoV-2 immunization impedes the generation of SARS-CoV-2-neutralizing antibodies in mice. Together, these data suggest that pre-existing hCCCoV antibodies hinder SARS-CoV-2 antibody-based immunity following infection and provide insight on how pre-existing coronavirus immunity impacts SARS-CoV-2 infection, which is critical considering emerging variants.


Induction of broadly reactive influenza antibodies increases susceptibility to autoimmunity.

  • Jocelyn G Labombarde‎ et al.
  • Cell reports‎
  • 2022‎

Infection and vaccination repeatedly expose individuals to antigens that are conserved between influenza virus subtypes. Nevertheless, antibodies recognizing variable influenza epitopes greatly outnumber antibodies reactive against conserved epitopes. Elucidating factors contributing to the paucity of broadly reactive influenza antibodies remains a major obstacle for developing a universal influenza vaccine. Here, we report that inducing broadly reactive influenza antibodies increases autoreactive antibodies in humans and mice and exacerbates disease in four distinct models of autoimmune disease. Importantly, transferring broadly reactive influenza antibodies augments disease in the presence of inflammation or autoimmune susceptibility. Further, broadly reactive influenza antibodies spontaneously arise in mice with defects in B cell tolerance. Together, these data suggest that self-tolerance mechanisms limit the prevalence of broadly reactive influenza antibodies, which can exacerbate disease in the context of additional risk factors.


Efficacy of telmisartan for the treatment of persistent renal proteinuria in dogs: A double-masked, randomized clinical trial.

  • Bianca N Lourenço‎ et al.
  • Journal of veterinary internal medicine‎
  • 2020‎

Information regarding efficacy of the angiotensin II receptor blocker, telmisartan, for treatment of proteinuria in dogs is limited.


NUDT15 polymorphism influences the metabolism and therapeutic effects of acyclovir and ganciclovir.

  • Rina Nishii‎ et al.
  • Nature communications‎
  • 2021‎

Nucleobase and nucleoside analogs (NNA) are widely used as anti-viral and anti-cancer agents, and NNA phosphorylation is essential for the activity of this class of drugs. Recently, diphosphatase NUDT15 was linked to thiopurine metabolism with NUDT15 polymorphism associated with drug toxicity in patients. Profiling NNA drugs, we identify acyclovir (ACV) and ganciclovir (GCV) as two new NNAs metabolized by NUDT15. NUDT15 hydrolyzes ACV and GCV triphosphate metabolites, reducing their effects against cytomegalovirus (CMV) in vitro. Loss of NUDT15 potentiates cytotoxicity of ACV and GCV in host cells. In hematopoietic stem cell transplant patients, the risk of CMV viremia following ACV prophylaxis is associated with NUDT15 genotype (P = 0.015). Donor NUDT15 deficiency is linked to graft failure in patients receiving CMV-seropositive stem cells (P = 0.047). In conclusion, NUDT15 is an important metabolizing enzyme for ACV and GCV, and NUDT15 variation contributes to inter-patient variability in their therapeutic effects.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: